Effects of the Local Flow Topologies Upon the Structure of a Premixed Methane-air Turbulent Jet Flame

被引:13
|
作者
Cifuentes, Luis [1 ]
Dopazo, Cesar [1 ]
Martin, Jesus [1 ]
Domingo, Pascale [2 ]
Vervisch, Luc [2 ]
机构
[1] Univ Zaragoza, CSIC, LIFTEC, Calle Maria de Luna 3, Zaragoza 50018, Spain
[2] Normandie Univ, CNRS, INSA Rouen, CORIA, F-76801 St Etienne Du Rouvray, Le Havre, France
关键词
Local flow topologies; Iso-scalar surface geometries; Invariants of the velocity-gradient tensor; Turbulent premixed flame; Direct numerical simulation; BOUNDARY-LAYER; SIMULATIONS; ALIGNMENT; EVOLUTION; GRADIENT; MOTIONS; NUMBER;
D O I
10.1007/s10494-015-9686-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
Local flow topologies have been identified and their interactions with the iso-scalar surfaces geometries have been investigated using the results of a three-dimensional direct numerical simulation (DNS) of a turbulent premixed methane-air flame in a piloted Bunsen burner configuration with tabulated chemistry. The universal teardrop shape of the joint probability density function (jpdf) of the second and third invariants of the velocity-gradient tensor disappears in the different flame regions under study. A 'canonical' vortex, which affects the fine-scale structure of the turbulent premixed flame, has been identified and analyzed at three times, differing by increments of the order of the Kolmogorov time micro-scale.
引用
收藏
页码:535 / 546
页数:12
相关论文
共 50 条
  • [21] Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame
    Roomina, MR
    Bilger, RW
    [J]. COMBUSTION AND FLAME, 2001, 125 (03) : 1176 - 1195
  • [22] Heat transfer characteristics of premixed methane-air flame jet impinging on a hemispherical surface
    Hua, Jinpeng
    Pan, Jianfeng
    Li, Feiyang
    Fan, Baowei
    Li, Zhongjia
    Ojo, Abiodun Oluwaleke
    [J]. FUEL, 2023, 343
  • [23] Premixed methane-air flame under alternate gravity
    Krikunova, A., I
    [J]. ACTA ASTRONAUTICA, 2020, 175 : 627 - 634
  • [24] The Function of Hydrogen Chloride on Methane-Air Premixed Flame
    Shin, Sung Su
    Lee, Ki Yong
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2005, 29 (09) : 979 - 987
  • [25] EXERGY TRANSFER RESEARCH ON THE SANDIA FLAME D - A TURBULENT PILOTED METHANE-AIR JET FLAME
    Zhang, Yaning
    Yu, Xiangyu
    Li, Bingxi
    [J]. HEAT TRANSFER RESEARCH, 2016, 47 (12) : 1169 - 1186
  • [26] Structure of a spatially developing turbulent lean methane-air Bunsen flame
    Sankaran, Ramanan
    HawkeS, Evatt R.
    Chen, Jacqueline H.
    Lu, Tianfeng
    Law, Chung K.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 1291 - 1298
  • [27] COMBUSTION OF PREMIXED METHANE-AIR IN STAGNATION FLOW
    HOCKS, W
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1977, 173 (MAR20): : 235 - 235
  • [28] Flame front analysis of high-pressure turbulent lean premixed methane-air flames
    Lachaux, T
    Halter, F
    Chauveau, C
    Gökalp, I
    Shepherd, IG
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 819 - 826
  • [29] Effect of preheated mixture on heat transfer characteristics of impinging methane-air premixed flame jet
    Tajik, Abdul Raouf
    Kuntikana, Pramod
    Prabhu, Siddini V.
    Hindasageri, Vijaykumar
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 86 : 550 - 562
  • [30] Mechanism of magnetic field effect on OH density distribution in a methane-air premixed jet flame
    Shinoda, M
    Yamada, E
    Kajimoto, T
    Yamashita, H
    Kitagawa, K
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 277 - 284