Multiview Clustering: A Late Fusion Approach Using Latent Models

被引:66
|
作者
Bruno, Eric [1 ]
Marchand-Maillet, Stephane [1 ]
机构
[1] Univ Geneva, Comp Sci Dpt, Viper Grp, Geneva, Switzerland
关键词
Multi-view clustering; data fusion; latent models;
D O I
10.1145/1571941.1572103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view clustering is an important problem in information retrieval due to the abundance of data offering many perspectives and generating multi-view representations. We investigate in this short note a late fusion approach for multi-view clustering based on the latent modeling of cluster-cluster relationships. We derive a probabilistic multi-view clustering model outperforming an early-fusion approach based on multi-view feature correlation analysis.
引用
收藏
页码:736 / 737
页数:2
相关论文
共 50 条
  • [21] A Deep Fusion Gaussian Mixture Model for Multiview Land Data Clustering
    Li, Peng
    Chen, Zhikui
    Gao, Jing
    Zhang, Jianing
    Jin, Shan
    Zhao, Wenhan
    Xia, Feng
    Wang, Lu
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020 (2020):
  • [22] Diversity-Induced Bipartite Graph Fusion for Multiview Graph Clustering
    Yan, Weiqing
    Zhao, Xinying
    Yue, Guanghui
    Ren, Jinlai
    Xu, Jindong
    Liu, Zhaowei
    Tang, Chang
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2592 - 2601
  • [23] Estimation of parameters in latent class models using fuzzy clustering algorithms
    Yang, MS
    Yu, NY
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 160 (02) : 515 - 531
  • [24] Etiologic inertia: Using latent variable models to address risk clustering
    Glass, T. A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 167 (11) : S43 - S43
  • [25] A Multiview Approach to Learning Articulated Motion Models
    Daniele, Andrea F.
    Howard, Thomas M.
    Walter, Matthew R.
    [J]. ROBOTICS RESEARCH, 2020, 10 : 371 - 386
  • [26] ANIMC: A Soft Approach for Autoweighted Noisy and Incomplete Multiview Clustering
    Fang X.
    Hu Y.
    Zhou P.
    Wu D.
    [J]. IEEE Transactions on Artificial Intelligence, 2022, 3 (02): : 192 - 206
  • [27] Two-stage fusion multiview graph clustering based on the attention mechanism
    Zhao X.
    Hou Z.
    Yao K.
    Liang J.
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2024, 64 (01): : 1 - 12
  • [28] Multimodality Fusion Method Based on Multiview Subspace Clustering for Pulmonary Embolism Diagnosis
    Hu, Peijun
    Qi, Qianqian
    Zhao, Yanxia
    Fu, Miaomiao
    Li, Jingsong
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 916 - 920
  • [29] Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method
    Li, Xuelong
    Zhang, Han
    Wang, Rong
    Nie, Feiping
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 330 - 344
  • [30] Multiview and multifeature spectral clustering using common eigenvectors
    Kanaan-Izquierdo, Samir
    Ziyatdinov, Andrey
    Perera-Lluna, Alexandre
    [J]. PATTERN RECOGNITION LETTERS, 2018, 102 : 30 - 36