Online implementation of SVM based fault diagnosis strategy for PEMFC systems

被引:80
|
作者
Li, Zhongliang [1 ,2 ]
Outbib, Rachid [3 ]
Giurgea, Stefan [1 ,2 ]
Hissel, Daniel [1 ,2 ]
Jemei, Samir [1 ,2 ]
Giraud, Alain [4 ]
Rosini, Sebastien [5 ]
机构
[1] CNRS, FR 3539, FCLAB Fuel Cell Lab Res Federat, Rue Thierry Mieg, F-90010 Belfort, France
[2] UFC UTBM ENSMM, Dept Energy, CNRS, FEMTO ST,UMR 6174, Paris, France
[3] Univ Aix Marseille, LSIS, Marseille, France
[4] CEA, LIST, F-91191 Gif Sur Yvette, France
[5] CEA Grenoble, LITEN, F-38054 Grenoble, France
关键词
PEMFC system; Fault diagnosis; SVM classification; System in Package; Online implementation; FUEL-CELL; MODEL; STACK; METHODOLOGIES;
D O I
10.1016/j.apenergy.2015.11.060
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the topic of online diagnosis for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems is addressed. In the diagnosis approach, individual cell voltages are used as the variables for diagnosis. The pattern classification tool Support Vector Machine (SVM) combined with designed diagnosis rule is used to achieve fault detection and isolation (FDI). A highly-compacted embedded system of the System in Package (SiP) type is designed and fabricated to monitor individual cell voltages and to perform the diagnosis algorithms. For validation, the diagnosis approach is implemented online on PEMFC experimental platform. Four concerned faults can be detected and isolated in real-time. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 293
页数:10
相关论文
共 50 条
  • [21] Bearing fault diagnosis based on PCA and SVM
    Shuang, Lu
    Meng, Li
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 3503 - +
  • [22] Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning
    Zhang, Xuexia
    Zhou, Jingzhe
    Chen, Weirong
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (24) : 13483 - 13495
  • [23] An Online Model-based Fault Diagnosis Scheme for HVAC Systems
    Thumati, Balaje T.
    Feinstein, Miles A.
    Fonda, James W.
    Turnbull, Alfred
    Weaver, Fay J.
    Calkins, Mark E.
    Jagannathan, S.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2011, : 70 - 75
  • [24] Adaptive online fault diagnosis of manufacturing systems based on DEVS formalism
    Rajaoarisoa, L.
    Sayed-Mouchaweh, M.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 6825 - 6830
  • [25] Fault diagnosis method of PEMFC system based on ensemble learning
    Zhang, Xuexia
    Peng, Lishuo
    He, Fei
    Huang, Ruike
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1501 - 1510
  • [26] FAULT DIAGNOSIS OF PEMFC FLOODING AND MEMBRANE DRYING BASED ON MFDFA
    Liu C.
    Zhang X.
    Jiang Y.
    Pei W.
    Chen W.
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (08): : 85 - 91
  • [27] Fault Diagnosis of PEMFC Stack Based on PSO-DBN
    Zhu, Shaopeng
    Zhang, Bo
    Wang, Liming
    Chen, Ping
    Chen, Huipeng
    Xu, Yekai
    [J]. PROCEEDINGS OF THE 10TH HYDROGEN TECHNOLOGY CONVENTION, VOL 3, WHTC 2023, 2024, 395 : 206 - 216
  • [28] Fault Diagnosis for PEMFC Systems in Consideration of Dynamic Behaviors and Spatial Inhomogeneity
    Li, Zhongliang
    Outbib, Rachid
    Giurgea, Stefan
    Hissel, Daniel
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2019, 34 (01) : 3 - 11
  • [29] Fault Diagnosis of PEMFC Systems In The Model Space Using Reservoir Computing
    Zheng, Zhixue
    Pera, Marie-Cecile
    Hissel, Daniel
    Larger, Laurent
    Steiner, Nadia Yousfi
    Jemei, Samir
    [J]. 2018 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2018,
  • [30] Fault diagnosis of rotating shaft systems based on wavelet entropy and GA-SVM
    Hu, Hai-Gang
    Zhou, Xin
    Feng, Zhi-Min
    [J]. Journal of Applied Sciences, 2013, 13 (16) : 3209 - 3214