On the bicriterion - minimal cost/minimal label - spanning tree problem

被引:11
|
作者
Climaco, Joao C. N. [2 ,3 ]
Captivo, M. Eugenia [4 ]
Pascoal, Marta M. B. [1 ,2 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
[2] Inst Engn Sistemas & Computadores, P-3000033 Coimbra, Portugal
[3] Univ Coimbra, Fac Econ, P-3004512 Coimbra, Portugal
[4] Univ Lisbon, Fac Ciencias, Ctr Invest Operac Campo Grande, P-1749016 Lisbon, Portugal
关键词
Spanning tree; Minimal cost; Minimal label; Multi-objective decision making; GENETIC ALGORITHM;
D O I
10.1016/j.ejor.2009.10.013
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We address a bicriterion spanning tree problem relevant in some application fields such as telecommunication networks or transportation networks. Each edge is assigned with a cost value and a label (such as a color). The first criterion intends to minimize the total cost of the spanning tree (the summation of its edge costs), while the second intends to get the solution with a minimal number of different labels. Since these criteria, in general, are conflicting criteria we developed an algorithm to generate the set of non-dominated spanning trees. Computational experiments are presented and results discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条