On the bicriterion - minimal cost/minimal label - spanning tree problem

被引:11
|
作者
Climaco, Joao C. N. [2 ,3 ]
Captivo, M. Eugenia [4 ]
Pascoal, Marta M. B. [1 ,2 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
[2] Inst Engn Sistemas & Computadores, P-3000033 Coimbra, Portugal
[3] Univ Coimbra, Fac Econ, P-3004512 Coimbra, Portugal
[4] Univ Lisbon, Fac Ciencias, Ctr Invest Operac Campo Grande, P-1749016 Lisbon, Portugal
关键词
Spanning tree; Minimal cost; Minimal label; Multi-objective decision making; GENETIC ALGORITHM;
D O I
10.1016/j.ejor.2009.10.013
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We address a bicriterion spanning tree problem relevant in some application fields such as telecommunication networks or transportation networks. Each edge is assigned with a cost value and a label (such as a color). The first criterion intends to minimize the total cost of the spanning tree (the summation of its edge costs), while the second intends to get the solution with a minimal number of different labels. Since these criteria, in general, are conflicting criteria we developed an algorithm to generate the set of non-dominated spanning trees. Computational experiments are presented and results discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [1] On bicriterion minimal spanning trees: An approximation
    Andersen, KA
    Jornsten, K
    Lind, M
    COMPUTERS & OPERATIONS RESEARCH, 1996, 23 (12) : 1171 - 1182
  • [2] A Multiperiod Minimal Spanning Tree problem
    Kawatra, Rakesh
    Proceedings of the Sixth IASTED International Multi-Conference on Wireless and Optical Communications, 2006, : 253 - 257
  • [3] NETWORK ANALYSIS - MINIMAL SPANNING TREE PROBLEM
    PARSONS, JA
    JOURNAL OF SYSTEMS MANAGEMENT, 1970, 21 (06): : 42 - 43
  • [4] MINIMAL SPANNING TREE
    WHITNEY, VKM
    COMMUNICATIONS OF THE ACM, 1972, 15 (04) : 273 - &
  • [5] On a Minimal Spanning, Tree Approach in the Cluster Validation Problem
    Barzily, Zeev
    Volkovich, Zeev
    Akteke-Oeztuerk, Basak
    Weber, Gerhard-Wilhelm
    INFORMATICA, 2009, 20 (02) : 187 - 202
  • [6] A multiperiod degree constrained minimal spanning tree problem
    Kawatra, R
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 143 (01) : 53 - 63
  • [7] Modeling a minimal spanning tree
    Liu, Haigang
    Modarres, Reza
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (07) : 5246 - 5256
  • [8] Minimal Spanning Tree technique
    Doroshkevich, A
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 417 - 418
  • [9] Sharing a minimal cost spanning tree: Beyond the Folk solution
    Bogomolnaia, Anna
    Moulin, Herve
    GAMES AND ECONOMIC BEHAVIOR, 2010, 69 (02) : 238 - 248
  • [10] THE MINIMAL NETWORK OF HOSPITALS AS A BICRITERION LOCATION PROBLEM
    Janosikova, L'udmila
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE QUANTITATIVE METHODS IN ECONOMICS (MULTIPLE CRITERIA DECISION MAKING XIV), 2008, : 116 - 123