Stochastic Optimal Foraging Theory

被引:9
|
作者
Bartumeus, Frederic [1 ]
Raposo, Ernesto P. [2 ]
Viswanathan, Gandhi M. [3 ]
da Luz, Marcos G. E. [4 ]
机构
[1] Ctr Adv Studies Blanes, Blanes 17300, Girona, Spain
[2] Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50739 Recife, PE, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Parana, Dept Fis, BR-80060000 Curitiba, Parana, Brazil
关键词
ACCELERATED DIFFUSION; JOSEPHSON-JUNCTIONS; EXPLOITING PATCHES; LEVY WALKS; SUCCESS; STRATEGIES; MEMORY;
D O I
10.1007/978-3-642-35497-7_1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We present here the core elements of a stochastic optimal foraging theory (SOFT), essentially, a random search theory for ecologists. SOFT complements classic optimal foraging theory (OFT) in that it assumes fully uninformed searchers in an explicit space. Mathematically, the theory quantifies the time spent by a random walker (the forager) on a spatial region delimited by absorbing boundaries (the targets). The walker starts from a given initial position and has no previous knowledge (nor the possibility to gain knowledge) on target/patch locations. Averages on such process can describe the dynamics of an uninformed forager looking for successive targets in a diverse and dynamical spatial environment. The framework provides a means to advance in the study of search uncertainty and animal information use in natural foraging systems.
引用
收藏
页码:3 / 32
页数:30
相关论文
共 50 条
  • [41] Integrating optimal foraging and optimal oviposition theory in plant-insect research
    Scheirs, J
    De Bruyn, L
    OIKOS, 2002, 96 (01) : 187 - 191
  • [42] Optimal foraging theory and niche-construction theory do not stand in opposition
    Mohlenhoff, Kathryn A.
    Coltrain, Joan Brenner
    Codding, Brian F.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (24) : E3093 - E3093
  • [43] FORAGING STRATEGY IN A SUBTERRANEAN RODENT, SPALAX-EHRENBERGI - A TEST CASE FOR OPTIMAL FORAGING THEORY
    HETH, G
    GOLENBERG, EM
    NEVO, E
    OECOLOGIA, 1989, 79 (04) : 496 - 505
  • [44] Optimal Foraging Theory and Medicinal Bark Extraction in Northeastern Brazil
    Feitosa, Ivanilda Soares
    Monteiro, Julio Marcelino
    Araujo, Elcida Lima
    Lopes, Priscila F. M.
    Albuquerque, Ulysses Paulino
    HUMAN ECOLOGY, 2018, 46 (06) : 917 - 922
  • [45] OPTIMAL FORAGING THEORY: LESSONS AND APPLICATION TO ADAPTIVE ENGINEERING SYSTEMS
    Lehman, John T.
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2008, PTS A AND B, 2009, : 249 - 251
  • [46] A GENERAL VERSION OF OPTIMAL FORAGING THEORY - THE EFFECT OF SIMULTANEOUS ENCOUNTERS
    ENGEN, S
    STENSETH, NC
    THEORETICAL POPULATION BIOLOGY, 1984, 26 (02) : 192 - 204
  • [47] BURKINA-FASO HERDSMEN AND OPTIMAL FORAGING THEORY - A RECONSIDERATION
    EDWARDS, DA
    JOSEPHSON, SC
    COLTRAIN, JB
    HUMAN ECOLOGY, 1994, 22 (02) : 213 - 215
  • [48] A New Application for the Optimal Foraging Theory: The Extraction of Medicinal Plants
    Soldati, Gustavo Taboada
    de Albuquerque, Ulysses Paulino
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2012, 2012
  • [49] CITATION CLASSIC - OPTIMAL FORAGING - A SELECTIVE REVIEW OF THEORY AND TESTS
    PYKE, GH
    CURRENT CONTENTS/AGRICULTURE BIOLOGY & ENVIRONMENTAL SCIENCES, 1984, (18): : 18 - 18
  • [50] Photography and Exploration of Tourist Locations Based on Optimal Foraging Theory
    Rawat, Yogesh Singh
    Shah, Mubarak
    Kankanhalli, Mohan S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 2276 - 2287