Spectral Methods in Spatial Statistics

被引:0
|
作者
Chen, Kun [1 ]
Zhang, Lianmin [2 ]
Pan, Maolin [3 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LIKELIHOOD;
D O I
10.1155/2014/380392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When the spatial location area increases becoming extremely large, it is very difficult, if not possible, to evaluate the covariance matrix determined by the set of location distance even for gridded stationary Gaussian process. To alleviate the numerical challenges, we construct a nonparametric estimator called periodogram of spatial version to represent the sample property in frequency domain, because periodogram requires less computational operation by fast Fourier transform algorithm. Under some regularity conditions on the process, we investigate the asymptotic unbiasedness property of periodogram as estimator of the spectral density function and achieve the convergence rate.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Spectral-Spatial Methods for Hyperspectral Image Classification. Review
    Borzov S.M.
    Potaturkin O.I.
    Optoelectronics, Instrumentation and Data Processing, 2018, 54 (6) : 582 - 599
  • [42] Design and evaluation of tinnitus synthesis methods: From spectral to spatial matching
    Bertet, Stephanie
    Baskind, Alexis
    Londero, Alain
    Bonfils, Laure
    Viaud-Delmon, Isabelle
    Warusfel, Olivier
    AMERICAN JOURNAL OF OTOLARYNGOLOGY, 2013, 34 (02) : 121 - 132
  • [43] Combining the spectral PCA and spatial PCA fusion methods by an optimal filter
    Shandoosti, Hamid Reza
    Ghassemian, Hassan
    INFORMATION FUSION, 2016, 27 : 150 - 160
  • [44] Spatial-spectral operator theoretic methods for hyperspectral image classification
    Benedetto J.J.
    Czaja W.
    Dobrosotskaya J.
    Doster T.
    Duke K.
    GEM - International Journal on Geomathematics, 2016, 7 (2) : 275 - 297
  • [45] ENSEMBLE METHODS FOR SPECTRAL-SPATIAL CLASSIFICATION OF URBAN HYPERSPECTRAL DATA
    Wang, Xin-Lu
    Waske, Bjoern
    Benediktsson, Jon Atli
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3324 - +
  • [46] Joint spectral and spatial quality evaluation of pan-sharpening methods
    Shah, Vijay P.
    Younan, Nicolas H.
    King, Roger L.
    JOURNAL OF APPLIED REMOTE SENSING, 2008, 2
  • [47] A survey of methods incorporating spatial information in image classification and spectral unmixing
    Wang, Le
    Shi, Chen
    Diao, Chunyuan
    Ji, Wenjie
    Yin, Dameng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (16) : 3870 - 3910
  • [48] Joint spectral and spatial quality evaluation of pan-sharpening methods
    Shah, Vijay P.
    Younan, Nicolas H.
    King, Roger L.
    Journal of Applied Remote Sensing, 2008, 2 (01)
  • [49] GIS, spatial analysis and spatial statistics
    Unwin, DJ
    PROGRESS IN HUMAN GEOGRAPHY, 1996, 20 (04) : 540 - 551
  • [50] Spectral geometry and Riemannian manifold mesh approximations: some autocorrelation lessons from spatial statistics
    Griffith, Daniel A.
    JOURNAL OF MATHEMATICS AND THE ARTS, 2023, 17 (3-4) : 293 - 313