Spectral Methods in Spatial Statistics

被引:0
|
作者
Chen, Kun [1 ]
Zhang, Lianmin [2 ]
Pan, Maolin [3 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LIKELIHOOD;
D O I
10.1155/2014/380392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When the spatial location area increases becoming extremely large, it is very difficult, if not possible, to evaluate the covariance matrix determined by the set of location distance even for gridded stationary Gaussian process. To alleviate the numerical challenges, we construct a nonparametric estimator called periodogram of spatial version to represent the sample property in frequency domain, because periodogram requires less computational operation by fast Fourier transform algorithm. Under some regularity conditions on the process, we investigate the asymptotic unbiasedness property of periodogram as estimator of the spectral density function and achieve the convergence rate.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Spatial Statistics and Computational Methods
    Donald E. Myers
    Mathematical Geology, 2005, 37 (6): : 667 - 669
  • [2] Spatial statistics: Methods, models & computation
    LeSage, James
    Banerjee, Sudipto
    Fischer, Manfred M.
    Congdon, Peter
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) : 2781 - 2785
  • [3] Spectral methods for nonstationary spatial processes
    Fuentes, M
    BIOMETRIKA, 2002, 89 (01) : 197 - 210
  • [4] Extraction of spatial and spectral scene statistics for hyperspectral scene simulation
    Sundberg, RL
    Kennett, R
    Gruninger, J
    Haren, RT
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3237 - 3240
  • [5] Spatial statistics and interpolation methods for TOF SIMS imaging
    Milillo, Tammy M.
    Gardella, Joseph A., Jr.
    APPLIED SURFACE SCIENCE, 2006, 252 (19) : 6883 - 6890
  • [6] On the classification of prostate carcinoma with methods from spatial statistics
    Wittke, Claudia
    Mayer, Johannes
    Schweiggert, Franz
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2007, 11 (04): : 406 - 414
  • [7] Spatial and Spectral Methods for Weed Detection and Localization
    Jean-Baptiste Vioix
    Jean-Paul Douzals
    Frédéric Truchetet
    Louis Assémat
    Jean-Philippe Guillemin
    EURASIP Journal on Advances in Signal Processing, 2002
  • [8] Spectral and spatial classification methods in the ARSGISIP project
    Müschen, B
    Flügel, WA
    Hochschild, V
    Steinnocher, K
    Quiel, F
    PHYSICS AND CHEMISTRY OF THE EARTH PART B-HYDROLOGY OCEANS AND ATMOSPHERE, 2001, 26 (7-8): : 613 - 616
  • [9] Spatial and spectral methods for weed detection and localization
    Vioix, JB
    Douzals, JP
    Truchetet, F
    Assémat, L
    Guillemin, JP
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (07) : 679 - 685
  • [10] REVIEW OF SPATIAL AND SPECTRAL FLUX SYNTHESIS METHODS
    STACEY, WM
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1971, 14 (02): : 637 - &