Paleozoic accretionary orogenesis and continental crustal growth in Central Asia are thought to have close relationship with the evolution of the Paleo-Asian Ocean (PAO). The well-exposed plutons in the northern Barleik Mountains of the West Junggar region, NW China, may provide essential insights into the evolution of the Junggar Ocean, a branch of the PAO, and mechanism of continental crustal growth. Our work on the Barleik plutons indicates an early suite of 324-320 Ma diorite and a late suite of 314-259 Ma quartz syenite and granitic porphyry. All the plutons are characterized by high-K calc-alkaline to shoshonitic signatures, varying depletion in Nb, Ta, Sr, P, Eu, and Ti, low initial Sr-87/Sr-86 ratios (0.70241-0.70585), strongly positive epsilon(Nd)(t) values ( +5.7-+7.7), and young one-stage Nd model ages (390-761 Ma), suggesting that they resulted from different batches of magma that were produced by fractional crystallization of a metasomatized mantle source with minor crustal contamination. The diorite is coeval with the youngest arc magmatic rocks, indicating a subduction-related origin. By contrast, the quartz syenite and granitic porphyry are geochemically similar to A(2)-type granites, with high Zr, Ga, and FeOT/[FeOT + MgO], and are coeval with the widespread plutons in the West Junggar. This, together with the occurrence of Late Carboniferous fluvial deposits and the lack of <320 Ma ophiolitic and subduction-related metamorphic lithologies, definitively indicates a post-collisional setting after the closure of the Junggar Ocean. Slab breakoff accompanied by asthenospheric upwelling and basaltic underplating is a possible geodynamic process that is responsible for the post-collisional magmatism and vertical crustal growth in the region. Thus a tectonic switch from subduction to post-collision started at the end of the Early Carboniferous (similar to 320 Ma), probably as a result of the final closure of the Junggar Ocean. (C) 2016 Elsevier B.V. All rights reserved.