Quasi-Banach modulation spaces and localization operators on locally compact abelian groups
被引:3
|
作者:
Bastianoni, Federico
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Co Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Co Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
Bastianoni, Federico
[1
]
Cordero, Elena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyPolitecn Co Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
Cordero, Elena
[2
]
机构:
[1] Politecn Co Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
We introduce new quasi-Banach modulation spaces on locally compact abelian groups which coincide with the classical ones in the Banach setting and prove their main properties. Then, we study Gabor frames on quasi-lattices, significantly extending the original theory introduced by Grochenig and Strohmer. These issues are the key tools in showing boundedness results for Kohn-Nirenberg and localization operators on modulation spaces and studying their eigenfunctions' properties. In particular, the results in the Euclidean space are recaptured.
机构:
Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, 10 Lo Ping Rd, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Math & Informat Technol, Tai Po, 10 Lo Ping Rd, Hong Kong, Peoples R China