GENERAL MULTIVARIATE DEPENDENCE USING ASSOCIATED COPULAS

被引:0
|
作者
Flores, Yuri Salazar [1 ]
机构
[1] Macquarie Univ, Ctr Financial Risk, Sydney, NSW 2109, Australia
关键词
non-positive dependence; tail dependence; copula theory; perfect dependence models; elliptical copulas; Archimedean copulas; ELLIPTICALLY CONTOURED DISTRIBUTIONS; TAIL DEPENDENCE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the general multivariate dependence and tail dependence of a random vector. We analyse the dependence of variables going up or down, covering the 2(d) orthants of dimension d and accounting for non-positive dependence. We extend definitions and results from positive to general dependence using the associated copulas. We study several properties of these copulas and present general versions of the tail dependence functions and tail dependence coefficients. We analyse the perfect dependence models, elliptical copulas and Archimedean copulas. We introduce the monotonic copulas and prove that the multivariate Student's t copula accounts for all types of tail dependence simultaneously while Archimedean copulas with strict generators can only account for positive tail dependence.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] Multivariate modeling of flood characteristics using Vine copulas
    Fatih Tosunoglu
    Faruk Gürbüz
    Muhammet Nuri İspirli
    [J]. Environmental Earth Sciences, 2020, 79
  • [32] A pathway for multivariate analysis of ecological communities using copulas
    Anderson, Marti J.
    de Valpine, Perry
    Punnett, Andrew
    Miller, Arden E.
    [J]. ECOLOGY AND EVOLUTION, 2019, 9 (06): : 3276 - 3294
  • [33] Multivariate modeling of flood characteristics using Vine copulas
    Tosunoglu, Fatih
    Gurbuz, Faruk
    Ispirli, Muhammet Nuri
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (19)
  • [34] Multivariate spatial analysis of groundwater quality using copulas
    Vahid Birjandi
    Sayyed-Hassan Tabatabaei
    Reza Mastouri
    Hossein Mazaheri
    Rasoul Mirabbasi
    [J]. Acta Geophysica, 2024, 72 : 1113 - 1125
  • [35] Multichannel hierarchical image classification using multivariate copulas
    Voisin, Aurelie
    Krylov, Vladimir A.
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    [J]. COMPUTATIONAL IMAGING X, 2012, 8296
  • [36] Multivariate analysis of rainfall–runoff characteristics using copulas
    Samira Moradzadeh Rahmatabadi
    Mohsen Irandoust
    Rasoul Mirabbasi
    [J]. Journal of Earth System Science, 132
  • [37] Estimating Multivariate Discrete Distributions Using Bernstein Copulas
    Fossaluza, Victor
    Esteves, Luis Gustavo
    de Braganca Pereira, Carlos Alberto
    [J]. ENTROPY, 2018, 20 (03)
  • [38] Modeling Multivariate Distributions Using Copulas: Applications in Marketing
    Danaher, Peter J.
    Smith, Michael S.
    [J]. MARKETING SCIENCE, 2011, 30 (01) : 4 - 21
  • [39] Practical approach to dependence modelling using copulas
    Dutfoy, A.
    Lebrun, R.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2009, 223 (O4) : 347 - 361
  • [40] A class of multivariate copulas with bivariate Frechet marginal copulas
    Yang, Jingping
    Qi, Yongcheng
    Wang, Ruodu
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 139 - 147