Molecular cytogenetics of brain tumors

被引:22
|
作者
Bigner, SH [1 ]
Schrock, E [1 ]
机构
[1] NATL HUMAN GENOME RES INST,BETHESDA,MD
关键词
brain tumors; chromosomes; comparative genomic hybridization; fluorescence in situ hybridization; genes; glioma; medulloblastoma;
D O I
10.1097/00005072-199711000-00001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Molecular cytogenetics includes a spectrum of methodologies that use molecular reagents to better define chromosomal alterations in normal and neoplastic cells. Brain tumors are a group of neoplasms for which there is a wealth of cytogenetic and molecular genetic information, and some of the newer techniques have extended the types of samples from which genetic information which can be obtained to biopsies and even paraffin-embedded sections. Fluorescence in situ hybridization on interphase nuclei has been used to confirm gains of chromosome 7, loss of chromosome 10, 9p deletion and gene amplification in malignant gliomas, and to visualize isochromosome 17q in medulloblastomas. Comparative genomic hybridization uses genomic DNA to determine gains and losses of chromosomes and chromosomal regions. This approach is particularly useful for identifying gene amplification. For cases in which chromosomal spreads are obtained, chromosomal painting is helpful in determining the origin of chromosomal segments. Several methods are now available in which each of the 22 autosomes and the sex chromosome can be identified by unique colors, termed Spectral karyotyping and multiplex-FISH. These molecular cytogenetic techniques are important clinical and experimental tools that have provided new insight into the genetic alterations of brain tumors.
引用
收藏
页码:1173 / 1181
页数:9
相关论文
共 50 条
  • [11] Molecular cytogenetics of bone and soft tissue tumors
    vanKessel, AG
    dosSantos, NR
    Simons, A
    deBruijn, D
    Forus, A
    Fodstad, O
    Myklebost, O
    Balemans, M
    Baats, E
    Weghuis, DO
    Suijkerbuijk, RF
    vandenBerg, E
    Molenaar, WM
    deLeeuw, B
    CANCER GENETICS AND CYTOGENETICS, 1997, 95 (01) : 67 - 73
  • [12] Updates on the cytogenetics and molecular cytogenetics of benign and intermediate soft tissue tumors (Review)
    Nishio, Jun
    ONCOLOGY LETTERS, 2013, 5 (01) : 12 - 18
  • [13] CYTOGENETICS AND MOLECULAR-GENETICS OF HUMAN SOLID TUMORS
    SAHLIN, P
    STENMAN, G
    SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY, 1995, 29 (02): : 101 - 110
  • [14] Molecular cytogenetics in Ewing tumors: Diagnostic and prognostic information
    Hattinger, CM
    Zoubek, A
    Ambros, PF
    ONKOLOGIE, 2000, 23 (05): : 416 - 422
  • [15] Molecular cytogenetics as a diagnostic tool for typing melanocytic tumors
    Bastian, BC
    CANCERS OF THE SKIN, PROCEEDINGS, 2002, 160 : 92 - 99
  • [16] Cytogenetics and molecular cytogenetics
    Jackson, L
    CLINICAL OBSTETRICS AND GYNECOLOGY, 2002, 45 (03): : 622 - 639
  • [17] From cytogenetics to cytogenomics of brain tumors: 1. Medulloblastoma
    Vagner-Capodano, AM
    Zattara-Cannoni, H
    Quilichini, B
    Giocanti, G
    BULLETIN DU CANCER, 2003, 90 (04) : 315 - 318
  • [18] CYTOGENETICS AND GENE AMPLIFICATION IN MALIGNANT HUMAN-BRAIN TUMORS
    BIGNER, SH
    VOGELSTEIN, B
    MARK, J
    BIGNER, DD
    CANCER GENETICS AND CYTOGENETICS, 1989, 41 (02) : 226 - 226
  • [19] Cytogenetics and Molecular Cytogenetics
    Liehr, T.
    ANTICANCER RESEARCH, 2023, 43 (11)
  • [20] Interphase cytogenetics and its role in molecular diagnostics of solid tumors
    Ried, T
    AMERICAN JOURNAL OF PATHOLOGY, 1998, 152 (02): : 325 - 327