State of charge estimation based on adaptive neuro-fuzzy inference system

被引:0
|
作者
Guan Jiansheng [1 ]
Xu Wenjin [1 ]
Zhang Abu [1 ]
机构
[1] Xiamen Univ, Dept Automat, Xiamen 361005, Peoples R China
关键词
state of charge (SOC); Adaptive Neuro-Fuzzy Inference System (ANFIS); battery;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we describe a method to estimate state of charge using an adaptive neuro-fuzzy inference system (ANFIS). Using a given input/output battery data set we obtain a fuzzy inference system (FIS) whose membership function parameters are tuned using an optimization algorithm. This allows fuzzy system to learn from the data he is modelling. That is, we use ANFIS to train a FIS model to emulate the data presented to it by modifying the membership function parameters according to a chosen error criterion. Input variables include the AC resistance, the DC internal resistance and the load voltage in battery management system. SOC are the output.
引用
收藏
页码:840 / 843
页数:4
相关论文
共 50 条
  • [41] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    [J]. APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032
  • [42] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    [J]. ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89
  • [43] Estimation of natural gases water content using adaptive neuro-fuzzy inference system
    Baghban, Alireza
    Kashiwao, Tomoaki
    Bahadori, Meysam
    Ahmad, Zainal
    Bahadori, Alireza
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (10) : 891 - 897
  • [44] Composition Estimation of Reactive Batch Distillation by Using Adaptive Neuro-Fuzzy Inference System
    Khazraee, S. M.
    Jahanmiri, A. H.
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2010, 18 (04) : 703 - 710
  • [45] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milos Milovancevic
    Aleksandar Dimov
    Kamen Boyanov Spasov
    Ljubomir Vračar
    Miroslav Planić
    [J]. Journal of Electronic Testing, 2021, 37 : 439 - 452
  • [46] Estimation of subsurface strata of earth using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Y. Srinivas
    A. Stanley Raj
    D. Hudson Oliver
    D. Muthuraj
    N. Chandrasekar
    [J]. Acta Geodaetica et Geophysica Hungarica, 2012, 47 : 78 - 89
  • [47] Contact positions estimation of sensing structure using adaptive neuro-fuzzy inference system
    Petkovic, Dalibor
    Issa, Mirna
    Pavlovic, Nenad D.
    Zentner, Lena
    Daud, Md Nor Ridzuan
    Shamshirband, Shahaboddin
    [J]. KYBERNETES, 2014, 43 (05) : 783 - 796
  • [48] Estimation of the Elemental Composition of Biomass Using Hybrid Adaptive Neuro-Fuzzy Inference System
    Olatunji, Obafemi O.
    Akinlabi, Stephen
    Madushele, Nkosinathi
    Adedeji, Paul A.
    [J]. BIOENERGY RESEARCH, 2019, 12 (03) : 642 - 652
  • [49] Adaptive Neuro-Fuzzy Inference System in Fuzzy Measurement to Track Association
    Tafti, Abdolreza Dehghani
    Sadati, Nasser
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 1 - 8
  • [50] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milovancevic, Milos
    Dimov, Aleksandar
    Spasov, Kamen Boyanov
    Vracar, Ljubomir
    Planic, Miroslav
    [J]. JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2021, 37 (04): : 439 - 452