A New Linear Kernel for Undirected Planar Feedback Vertex Set: Smaller and Simpler

被引:0
|
作者
Xiao, Mingyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
关键词
Kernelization; Feedback Vertex Set; Planar Graphs; ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that any instance I of the Feedback Vertex Set problem in undirected planar graphs can be reduced to an equivalent instance I' such that (i) the size of the instance and the size of the minimum feedback vertex set do not increase, (ii) and the size of the minimum feedback vertex set in I' is at least 1/29 of the number of vertices in I'. This implies a 29k kernel for this problem with parameter k being the size of the feedback vertex set. Our result improves the previous results of 97k and 112k.
引用
收藏
页码:288 / 298
页数:11
相关论文
共 50 条
  • [21] An improved linear kernel for complementary maximal strip recovery: Simpler and smaller
    Li, Wenjun
    Liu, Haiyan
    Wang, Jianxin
    Xiang, Lingyun
    Yang, Yongjie
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 786 : 55 - 66
  • [22] A 2-approximation algorithm for the undirected feedback vertex set problem
    Bafna, V
    Berman, P
    Fujito, T
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) : 289 - 297
  • [23] Structural Parameterizations of Undirected Feedback Vertex Set: FPT Algorithms and Kernelization
    Diptapriyo Majumdar
    Venkatesh Raman
    [J]. Algorithmica, 2018, 80 : 2683 - 2724
  • [24] Faster fixed parameter tractable algorithms for undirected feedback vertex set
    Raman, V
    Saurabh, S
    Subramanian, CR
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 241 - 248
  • [25] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Eva-Maria C. Hols
    Stefan Kratsch
    [J]. Theory of Computing Systems, 2018, 62 : 63 - 92
  • [26] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Bergougnoux, Benjamin
    Eiben, Eduard
    Ganian, Robert
    Ordyniak, Sebastian
    Ramanujan, M. S.
    [J]. ALGORITHMICA, 2021, 83 (05) : 1201 - 1221
  • [27] A Cubic Kernel for Feedback Vertex Set and Loop Cutset
    Hans L. Bodlaender
    Thomas C. van Dijk
    [J]. Theory of Computing Systems, 2010, 46 : 566 - 597
  • [28] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    [J]. 33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [29] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Benjamin Bergougnoux
    Eduard Eiben
    Robert Ganian
    Sebastian Ordyniak
    M. S. Ramanujan
    [J]. Algorithmica, 2021, 83 : 1201 - 1221
  • [30] A Cubic Kernel for Feedback Vertex Set and Loop Cutset
    Bodlaender, Hans L.
    van Dijk, Thomas C.
    [J]. THEORY OF COMPUTING SYSTEMS, 2010, 46 (03) : 566 - 597