Improved 3D-QSAR Prediction by Multiple Conformational Alignments and Molecular Docking Studies to Design and Discover HIV-I Protease Inhibitors

被引:3
|
作者
Patel, Paresh K. [1 ,2 ]
Bhatt, Hardik G. [1 ]
机构
[1] Nirma Univ, Inst Pharm, Dept Pharmaceut Chem, Ahmadabad 382481, Gujarat, India
[2] LJ Inst Pharm, Dept Med Chem & Qual Assurance, LJ Campus, Ahmadabad 382210, Gujarat, India
关键词
HIV protease; 3D-QSAR; CoMFA; CoMSIA; molecular docking; design; AIDED DRUG DESIGN; REVERSE-TRANSCRIPTASE; BIOLOGICAL EVALUATION; DYNAMICS SIMULATIONS; X-RAY; DERIVATIVES; COMFA; QSAR; COMSIA; STRATEGIES;
D O I
10.2174/1570162X18666201119143457
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Inhibition of HIV-I protease enzyme is a strategic step for providing better treatment in retrovirus infections, which avoids resistance and possesses less toxicity. Objectives: In the course of our research to discover new and potent protease inhibitors, 3D-QSAR (CoMFA and CoMSIA) models were generated using 3 different alignment techniques, including multifit alignment, docking based and Distill based alignment for 63 compounds. Novel molecules were designed from the output of this study. Methods: A total of 3 alignment methods were used to generate CoMFA and CoMSIA models. A Distill based alignment method was considered a better method according to different validation parameters. A 3D-QSAR model was generated and contour maps were discussed. The biological activity of designed molecules was predicted using the generated QSAR model to validate QSAR. The newly designed molecules were docked to predict binding affinity. Results: In CoMFA, leave one out cross-validated coefficient (q(2)), conventional coefficient (r(2)) and predicted correlation coefficient (r(Predicted)(2)) values were found to be 0.721, 0.991 and 0.780, respectively. The best obtained CoMSIA model also showed significant cross-validated coefficient (q(2)), conventional coefficient (r(2)) and predicted correlation coefficient (r(Predicted)(2)) values of 0.714, 0.987 and 0.721, respectively. Steric and electrostatic contour maps generated from CoMFA and hydrophobic and hydrogen bond donor and hydrogen bond acceptor contour maps from CoMSIA models were used to design new and bioactive protease inhibitors by incorporating bioisosterism and knowledge-based structure-activity relationship. Conclusion: The results from both these approaches, ligand-based drug design and structure-based drug design, are adequate and promising to discover protease inhibitors.
引用
收藏
页码:154 / 171
页数:18
相关论文
共 50 条
  • [41] 3D-QSAR and molecular docking studies of azaindole derivatives as Aurora B kinase inhibitors
    Ping Lan
    Wan-Na Chen
    Ping-Hua Sun
    Wei-Min Chen
    Journal of Molecular Modeling, 2011, 17 : 1191 - 1205
  • [42] 3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors
    Li, Xiaolin
    Fu, Jie
    Shi, Wei
    Luo, Yin
    Zhang, Xiaowei
    Zhu, Hailiang
    Yu, Hongxia
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2013, 34 (08) : 2387 - 2393
  • [43] In silico design of novel FAK inhibitors using integrated molecular docking, 3D-QSAR and molecular dynamics simulation studies
    Shirvani, Pouria
    Fassihi, Afshin
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (13): : 5965 - 5982
  • [44] Design of novel focal adhesion kinase inhibitors using 3D-QSAR and molecular docking
    Lu, Xia
    Zhao, Lingzhou
    Xue, Tian
    Zhang, Huabei
    MEDICINAL CHEMISTRY RESEARCH, 2014, 23 (04) : 1976 - 1997
  • [45] Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies
    Cheng, Peng
    Li, Jiaojiao
    Wang, Juan
    Zhang, Xiaoyun
    Zhai, Honglin
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2018, 36 (06): : 1529 - 1549
  • [46] 3D-QSAR studies of checkpoint kinase 1 inhibitors based on molecular docking and CoMFA
    Wang, Rong Wei
    Zhou, Lu
    Zuo, Zhili
    Ma, Xiang
    Yang, Min
    MOLECULAR SIMULATION, 2010, 36 (02) : 87 - 110
  • [47] Design of novel focal adhesion kinase inhibitors using 3D-QSAR and molecular docking
    Xia Lu
    Lingzhou Zhao
    Tian Xue
    Huabei Zhang
    Medicinal Chemistry Research, 2014, 23 : 1976 - 1997
  • [48] 3D-QSAR and molecular docking studies of amino-pyrimidine derivatives as PknB inhibitors
    Damre, Mangesh V.
    Gangwal, Rahul P.
    Dhoke, Gaurao V.
    Lalit, Manisha
    Sharma, Dipna
    Khandelwal, Kanchan
    Sangamwar, Abhay T.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (02) : 354 - 364
  • [49] Rational design of novel potential EGFR inhibitors by 3D-QSAR, molecular docking, molecular dynamics simulation, and pharmacokinetics studies
    El Khatabi, Khalil
    El-mernissi, Reda
    Moukhliss, Youness
    Hajji, Halima
    Rehman, Hafiz Muzzammel
    Yadav, Rohitash
    Lakhlifi, Tahar
    Ajana, Mohammed Aziz
    Bouachrine, Mohammed
    CHEMICAL DATA COLLECTIONS, 2022, 39
  • [50] Design of Novel IRAK4 Inhibitors Using Molecular Docking, Dynamics Simulation and 3D-QSAR Studies
    Bhujbal, Swapnil P.
    He, Weijie
    Hah, Jung-Mi
    MOLECULES, 2022, 27 (19):