ON ESTIMATION OF UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS BY (p, q)-BERNSTEIN OPERATORS

被引:2
|
作者
Mursaleen, M. [1 ]
Khan, Faisal [1 ]
Saif, Mohd [2 ]
Khan, Abdul Hakim [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Aligarh Muslim Univ, Dept Appl Math, Aligarh, Uttar Pradesh, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2019年 / 27卷 / 02期
关键词
(p; q)-integers; q)-Bernstein operators; divided difference; analytic function; uniform convergence; Q-BERNSTEIN POLYNOMIALS; APPROXIMATION; Q)-ANALOG;
D O I
10.11568/kjm.2019.27.2.505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the approximation properties of a continuous function by the sequence of (p, q)-Bernstein operators for q > p > 1. We obtain bounds of (p, q)-Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk {z : vertical bar z vertical bar <= rho, then B-p,q(n)(g; z) -> g(z) (n -> infinity) uniformly on any compact set in the given disk {z : vertical bar z vertical bar <= rho}, rho > 0.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条
  • [31] Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 655 - 662
  • [32] On approximation properties of generalised (p, q)-Bernstein operators
    Karahan, Done
    Izgi, Aydin
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (02): : 457 - 467
  • [33] RATE OF CONVERGENCE OF q - ANALOGUE OF A CLASS OF NEW BERNSTEIN TYPE OPERATORS
    Deshwal, Sheetal
    Acu, Ana Maria
    Agrawal, P. N.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 211 - 234
  • [34] Some approximation properties of (p, q)-Bernstein operators
    Kang, Shin Min
    Rafiq, Arif
    Acu, Ana-Maria
    Ali, Faisal
    Kwun, Young Chel
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [35] On (p, q)-analogue of modified Bernstein-Schurer operators for functions of one and two variables
    Cai, Qing-Bo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 1 - 21
  • [36] APPROXIMATION OF ANALYTIC FUNCTIONS BY BERNSTEIN-TYPE OPERATORS .2.
    EISENBER.SM
    WOOD, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 557 - &
  • [37] Convergence of rational Bernstein operators
    Render, Hermann
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1076 - 1089
  • [38] Bivariate Bernstein Chlodovsky Operators Preserving Exponential Functions and Their Convergence Properties
    Acar, Tuncer
    Bodur, Murat
    Isikli, Esma
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, 45 (01) : 16 - 37
  • [39] THE CONVERGENCE OF q-BERNSTEIN POLYNOMIALS (0 &lt; q &lt; 1) AND LIMIT q-BERNSTEIN OPERATORS IN COMPLEX DOMAINS
    Ostrovska, Sofiya
    Wang, Heping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1279 - 1291
  • [40] ON THE APPROXIMATION OF ANALYTIC FUNCTIONS BY THE q-BERNSTEIN POLYNOMIALS IN THE CASE q &gt; 1
    Ostrovska, Sofiya
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 105 - 112