ON ESTIMATION OF UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS BY (p, q)-BERNSTEIN OPERATORS

被引:2
|
作者
Mursaleen, M. [1 ]
Khan, Faisal [1 ]
Saif, Mohd [2 ]
Khan, Abdul Hakim [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Aligarh Muslim Univ, Dept Appl Math, Aligarh, Uttar Pradesh, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2019年 / 27卷 / 02期
关键词
(p; q)-integers; q)-Bernstein operators; divided difference; analytic function; uniform convergence; Q-BERNSTEIN POLYNOMIALS; APPROXIMATION; Q)-ANALOG;
D O I
10.11568/kjm.2019.27.2.505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the approximation properties of a continuous function by the sequence of (p, q)-Bernstein operators for q > p > 1. We obtain bounds of (p, q)-Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk {z : vertical bar z vertical bar <= rho, then B-p,q(n)(g; z) -> g(z) (n -> infinity) uniformly on any compact set in the given disk {z : vertical bar z vertical bar <= rho}, rho > 0.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条
  • [1] Convergence of λ-Bernstein operators based on (p, q)-integers
    Cai, Qing-Bo
    Cheng, Wen-Tao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [2] Convergence of λ-Bernstein operators based on (p, q)-integers
    Qing-Bo Cai
    Wen-Tao Cheng
    Journal of Inequalities and Applications, 2020
  • [3] ON THE CONVERGENCE OF (p, q)-BERNSTEIN OPERATORS OF THE RATIONAL FUNCTIONS WITH POLES IN [0,1]
    Khan, Faisal
    Saif, Mohd
    Mursaleen, M.
    Khan, Abdul Hakim
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 : 15 - 27
  • [4] On the convergence of Lupa (p,q)-Bernstein operators via contraction principle
    Bin Jebreen, Haifa
    Mursaleen, Mohammad
    Ahasan, Mohd
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [5] Convergence of Iterates of q-Bernstein and (p,q)-Bernstein Operators and the Kelisky-Rivlin Type Theorem
    Rahman, Shagufta
    Mursaleen, M.
    Alkhaldi, Ali H.
    FILOMAT, 2018, 32 (12) : 4351 - 4364
  • [6] On (p, q)-analogue of Bernstein operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 874 - 882
  • [7] Uniform and pointwise convergence of Bernstein-Durrmeyer operators with respect to monotone and submodular set functions
    Gal, Sorin G.
    Opris, Bogdan D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (02) : 1374 - 1379
  • [8] UNIFORM APPROXIMATION BY GENERALIZED Q-BERNSTEIN OPERATORS
    Finta, Z.
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 877 - 891
  • [10] APPROXIMATION OF ANALYTIC FUNCTIONS BY BERNSTEIN-TYPE OPERATORS
    EISENBER.SM
    WOOD, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 94 - &