Lie derivation and Hochschild cohomology of an extension of path algebras

被引:0
|
作者
Hou, Bo [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2017年 / 65卷 / 05期
基金
中国国家自然科学基金;
关键词
Lie derivation; Hochschild (co) homology; generalized one-point extension; RING;
D O I
10.1080/03081087.2016.1221377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and Q a finite simply laced quiver without oriented cycles. Firstly, we prove that each Lie derivation of the generalized one-point extension of path algebra kQ is of the standard form, and the standard decomposition is unique. Secondly, we calculated the k-dimensions of all the Hochschild cohomology of the generalized one-point extension of A type path algebra, and gave a description of the cup product in the Hochschild cohomology ring.
引用
收藏
页码:1022 / 1034
页数:13
相关论文
共 50 条