On the Lie algebra structure of the first Hochschild cohomology of gentle algebras and Brauer graph algebras

被引:9
|
作者
Chaparro, Cristian [1 ]
Schroll, Sibylle [2 ]
Solotar, Andrea [1 ]
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, Pabellon 1 Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Leicester, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Hochschild cohomology; Gerstenhaber brackets; Brauer graph algebras; Trivial extensions; Lie algebras; BRACKET; INVARIANTS; SURFACES;
D O I
10.1016/j.jalgebra.2020.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we determine the first Hochschild homology and cohomology with different coefficients for gentle algebras and we give a geometrical interpretation of these (co)homologies using the ribbon graph of a gentle algebra as defined in [32]. We give an explicit description of the Lie algebra structure of the first Hochschild cohomology of gentle and Brauer graph algebras (with multiplicity one) based on trivial extensions of gentle algebras and we show how the Hochschild cohomology is encoded in the Brauer graph. In particular, we show that except in one low-dimensional case, the resulting Lie algebras are all solvable. (C) 2020 Published by Elsevier Inc.
引用
收藏
页码:293 / 326
页数:34
相关论文
共 50 条