Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum

被引:64
|
作者
Slezak, Bradley R. [1 ]
Lewandowski, Charles W. [2 ]
Hsu, Jen-Feng [1 ]
D'Urso, Brian [2 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[2] Montana State Univ, Bozeman, MT 59715 USA
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
美国国家科学基金会;
关键词
optomechanics; magnetic trapping; feedback cooling; QUANTUM GROUND-STATE; NANOMECHANICAL OSCILLATOR; LEVITATED NANOSPHERE; BEAM;
D O I
10.1088/1367-2630/aacac1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Levitated optomechanical systems, and particularly particles trapped in vacuum, provide unique platforms for studying the mechanical behavior of objects well-isolated from their environment. Ultimately, such systems may enable the study of fundamental questions in quantum mechanics, gravity, and other weak forces. While the optical trapping of nanoparticles has emerged as the prototypical levitated optomechanical system, it is not without problems due to the heating from the high optical intensity required, particularly when combined with a high vacuum environment. Here we investigate a magneto-gravitational trap in ultra-high vacuum. In contrast to optical trapping, we create an entirely passive trap for diamagnetic particles by utilizing the magnetic field generated by permanent magnets and the gravitational interaction. We demonstrate cooling the center of mass motion of a trapped silica microsphere from ambient temperature to an effective temperature near or below one milliKelvin in two degrees of freedom by optical feedback damping.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] BAKEABLE ULTRA-HIGH VACUUM SYSTEMS
    HOLLAND, L
    [J]. JOURNAL OF SCIENTIFIC INSTRUMENTS, 1962, 39 (05): : 247 - &
  • [32] ELECTRONIC ULTRA-HIGH VACUUM PUMP
    HALL, LD
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1958, 29 (05): : 367 - 370
  • [33] CSRm Ultra-High Vacuum System
    杨晓天
    蒙峻
    张军辉
    张喜平
    胡振军
    侯生军
    张新俊
    郝斌干
    吴慧敏
    [J]. Plasma Science and Technology, 2005, (05) : 39 - 42
  • [34] CSRm ultra-high vacuum system
    Yang, XT
    Jun, M
    Zhang, JH
    Zhang, XP
    Hu, ZJ
    Hou, SJ
    Zhang, XJ
    Hao, BG
    Wu, HM
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2005, 7 (05) : 3021 - 3024
  • [35] LARGE ULTRA-HIGH VACUUM VALVE
    CALDWELL, BA
    KLEMPERER, DF
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1962, 33 (12): : 1458 - &
  • [36] CONTAMINATION IN ULTRA-HIGH VACUUM PLANT
    HOLLAND, L
    PRIESTLAND, C
    LAURENSON, L
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1963, 34 (04): : 377 - +
  • [37] NEW ULTRA-HIGH VACUUM VALVE
    PATY, L
    SCHURER, P
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1957, 28 (08): : 654 - 655
  • [38] ULTRA-HIGH VACUUM IONIZATION MANOMETER
    LANDER, JJ
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1950, 21 (07): : 672 - 673
  • [39] METAL ADHESION IN ULTRA-HIGH VACUUM
    DESALOS, Y
    PAULMIER, D
    [J]. JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1969, 66 (05) : 940 - &
  • [40] ULTRA-HIGH VACUUM AND PRECISION IN MEASUREMENT
    Cook, Brandoch
    [J]. Lab Manager, 2019, 14 (08): : 52 - 53