Uniaxial and radial anisotropy models for finite-volume Maxwellian absorber

被引:7
|
作者
Sankaran, Krishnaswamy [1 ]
Fumeaux, Christophe [1 ]
Vahldieck, Rudiger [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Electromagnet Fields & Microwave Elect, CH-8092 Zurich, Switzerland
关键词
computational electromagnetics (CEM); finite volume time domain (FVTD); Maxwellian absorber; perfectly matched layer (PML); radial absorber;
D O I
10.1109/TMTT.2006.885577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The uniaxial finite-volume Maxwellian absorber used as a perfectly matched layer is extended to incorporate radial anisotropy for modeling cylindrical geometries. Theoretical background and practical applications of both uniaxial and radial absorber models are presented. Both these models employ spatially and temporally co-located electromagnetic field quantities in an unstructured mesh. The uniaxial Maxwellian absorber model is tested for a truncated waveguide problem. The influence of absorber thickness and material loss parameter on the performance of the model is analyzed. Numerical reflection coefficients down to -60 dB are achieved for fine mesh discretization with approximately 20 points per wavelength confirming the convergence of numerical results. As an extension of the technique, a radially anisotropic absorber model is tested for cylindrical mesh truncation using a representative problem involving two different test scenarios. Results are compared with an existing technique commonly used in finite-volume time-domain simulations, demonstrating substantial reduction in numerical error due to cylindrical mesh truncation.
引用
收藏
页码:4297 / 4304
页数:8
相关论文
共 50 条
  • [1] Finite-volume Maxwellian absorber on unstructured grid
    Sankaran, Krishnaswamy
    Fumeaux, Christophe
    Vahldieck, Rudiger
    [J]. 2006 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-5, 2006, : 169 - +
  • [2] A finite-volume scheme for dynamic reliability models
    Cocozza-Thivent, C.
    Eymard, R.
    Mercier, S.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (03) : 446 - 471
  • [3] Conservative model reduction for finite-volume models
    Carlberg, Kevin
    Choi, Youngsoo
    Sargsyan, Syuzanna
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 280 - 314
  • [4] Anisotropy favoring triangulation CVD(MPFA) finite-volume approximations
    Pal, Mayur
    Edwards, Michael G.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (10) : 1247 - 1263
  • [5] An investigation of the accuracy of finite-volume radial domain truncation technique
    Sankaran, Krishnaswamy
    Fumeaux, Christophe
    Vahdieck, Ruediger
    [J]. 2007 WORKSHOP ON COMPUTATIONAL ELECTROMAGNETICS IN TIME-DOMAIN, 2007, : 41 - 44
  • [6] Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design
    You, Jian Wei
    Zhang, Jian Feng
    Jiang, Wei Xiang
    Ma, Hui Feng
    Cui, Wan Zhao
    Cui, Tie Jun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (07) : 1966 - 1975
  • [7] Finite-volume models for unidirectional, nonlinear, dispersive waves
    Bradford, SF
    Sanders, BF
    [J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2002, 128 (04) : 173 - 182
  • [8] Conformal perfectly matched absorber for Finite-Volume Time-Domain simulations
    Baumann, Dirk
    Fumeaux, Christopbe
    Vahldieck, Ruediger
    Li, Erping
    [J]. 2008 ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND 19TH INTERNATIONAL ZURICH SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1 AND 2, 2008, : 188 - +
  • [9] A "vertically Lagrangian'' finite-volume dynamical core for global models
    Lin, SJ
    [J]. MONTHLY WEATHER REVIEW, 2004, 132 (10) : 2293 - 2307
  • [10] On the numerical implementation of nonlinear viscoelastic models in a finite-volume method
    Oliveira, PJ
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2001, 40 (04) : 283 - 301