Finite-volume models for unidirectional, nonlinear, dispersive waves

被引:14
|
作者
Bradford, SF [1 ]
Sanders, BF
机构
[1] Naval Res Lab, Image Sci & Applicat Branch, Washington, DC 20375 USA
[2] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
关键词
wave propagation; wave dispersion; models; simulation; damping;
D O I
10.1061/(ASCE)0733-950X(2002)128:4(173)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Several finite-volume schemes are developed and applied to simulate nonlinear, dispersive, unidirectional waves propagating over a flat bed. These schemes differ mainly in the treatment of advection, while dispersion is treated the same among the different models. Three methods-linear, total variation diminishing, and essentially nonoscillatory-are used to discretize the advection portion of the governing equation. The linear schemes are analyzed with Von Neumann's method to discern stability limits as well as their damping and dispersion characteristics. In addition, predictions from all of the models are compared with analytical solutions for solitary and cnoidal waves as well as experimental data for undular bores. The finite-volume methods are also compared with a second-order accurate finite-difference scheme. The results indicate that the finite-volume schemes yield more accurate solutions than the finite-difference scheme. In addition, the Warming-Beam and Fromm linear finite-volume schemes yielded the most accurate solutions and were among the most computationally efficient schemes tested.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [1] Finite volume methods for unidirectional dispersive wave models
    Dutykh, D.
    Katsaounis, Th.
    Mitsotakis, D.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (06) : 717 - 736
  • [2] On the numerical implementation of nonlinear viscoelastic models in a finite-volume method
    Oliveira, PJ
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2001, 40 (04) : 283 - 301
  • [3] Finite-difference and finite-volume methods for nonlinear standing ultrasonic waves in fluid media
    Vanhille, C
    Conde, C
    Campos-Pozuelo, C
    [J]. ULTRASONICS, 2004, 42 (1-9) : 315 - 318
  • [4] A finite-volume scheme for dynamic reliability models
    Cocozza-Thivent, C.
    Eymard, R.
    Mercier, S.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (03) : 446 - 471
  • [5] Conservative model reduction for finite-volume models
    Carlberg, Kevin
    Choi, Youngsoo
    Sargsyan, Syuzanna
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 280 - 314
  • [6] NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES
    ABDELOUHAB, L
    BONA, JL
    FELLAND, M
    SAUT, JC
    [J]. PHYSICA D, 1989, 40 (03): : 360 - 392
  • [7] A Finite-Volume Approach to 1D Nonlinear Elastic Waves: Application to Slow Dynamics
    Berjamin, H.
    Lombard, B.
    Chiavassa, G.
    Favrie, N.
    [J]. ACTA ACUSTICA UNITED WITH ACUSTICA, 2018, 104 (04) : 561 - 570
  • [8] Optimal nonlinear filtering using the finite-volume method
    Fox, Colin
    Morrison, Malcolm E. K.
    Norton, Richard A.
    Molteno, Timothy C. A.
    [J]. PHYSICAL REVIEW E, 2018, 97 (01)
  • [9] Monotone nonlinear finite-volume method for challenging grids
    Schneider, M.
    Flemisch, B.
    Helmig, R.
    Terekhov, K.
    Tchelepi, H.
    [J]. COMPUTATIONAL GEOSCIENCES, 2018, 22 (02) : 565 - 586
  • [10] Monotone nonlinear finite-volume method for challenging grids
    M. Schneider
    B. Flemisch
    R. Helmig
    K. Terekhov
    H. Tchelepi
    [J]. Computational Geosciences, 2018, 22 : 565 - 586