Data-driven glass-forming ability criterion for bulk amorphous metals with data augmentation

被引:29
|
作者
Xiong, Jie [1 ]
Zhang, Tong-Yi [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen 518000, Peoples R China
[2] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou 511400, Peoples R China
[3] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Materials informatics; Glass-forming ability; Data augmentation; Model interpretation; Meta-ensemble model; PREDICTION; TEMPERATURE;
D O I
10.1016/j.jmst.2021.12.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A data augmentation technique is employed in the current work on a training dataset of 610 bulk metallic glasses (BMGs), which are randomly selected from 762 collected data. An ensemble machine learning (ML) model is developed on augmented training dataset and tested by the rest 152 data. The result shows that ML model has the ability to predict the maximal diameter D-max of BMGs more accurate than all reported ML models. In addition, the novel ML model gives the glass forming ability (GFA) rules: average atomic radius ranging from 140 pm to 165 pm, the value of TgTx/(T-l-T-g)(T-l-T-x) being higher than 2.5, the entropy of mixing being higher than 10 J/K/mol, and the enthalpy of mixing ranging from -32 kJ/mol to -26 kJ/mol. ML model is interpretative, thereby deepening the understanding of GFA. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 50 条
  • [41] A thermodynamic criterion for predicting glass-forming ability in binary metallic glasses
    Ji, Xiulin
    Pan, Ye
    Ni, Fusheng
    MATERIALS & DESIGN, 2009, 30 (03): : 842 - 845
  • [42] A new criterion for glass forming ability of bulk metallic glasses
    Cai, A. -H.
    Pan, Y.
    Gu, J.
    Sun, G. -X.
    MATERIALS SCIENCE AND TECHNOLOGY, 2006, 22 (07) : 859 - 863
  • [43] New criterion of glass forming ability for bulk metallic glasses
    Du, X. H.
    Huang, J. C.
    Liu, C. T.
    Lu, Z. P.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (08)
  • [44] A thermodynamic approach to assess glass-forming ability of bulk metallic glasses
    纪秀林
    潘冶
    Transactions of Nonferrous Metals Society of China, 2009, 19 (05) : 1271 - 1279
  • [45] Evaluation of the parameters related to glass-forming ability of bulk metallic glasses
    Cai, AH
    Sun, GX
    Pan, Y
    MATERIALS & DESIGN, 2006, 27 (06) : 479 - 488
  • [46] Recent progress in quantifying glass-forming ability of bulk metallic glasses
    Lu, Z. P.
    Bei, H.
    Liu, C. T.
    INTERMETALLICS, 2007, 15 (5-6) : 618 - 624
  • [47] Machine learning prediction of glass-forming ability in bulk metallic glasses
    Xiong, Jie
    Shi, San-Qiang
    Zhang, Tong-Yi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [48] A new parameter to evaluate the glass-forming ability of bulk metallic glasses
    Suo, Z. Y.
    Qiu, K. Q.
    Li, Q. F.
    You, J. H.
    Ren, Y. L.
    Hu, Z. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 528 (01): : 429 - 433
  • [49] A thermodynamic approach to assess glass-forming ability of bulk metallic glasses
    Ji Xiu-lin
    Pan Ye
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (05) : 1271 - 1279
  • [50] Evaluation on the reliability of criterions for glass-forming ability of bulk metallic glasses
    W. B. SHENG
    Journal of Materials Science, 2005, 40 : 5061 - 5066