Inverse limits of Markov interval maps

被引:11
|
作者
Holte, SE [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
关键词
inverse limit space; Markov map; kneading sequence; attractor;
D O I
10.1016/S0166-8641(01)00209-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse limit spaces of one-dimensional continua frequently appear as attractors in dissipative dynamical systems. As such, there has been considerable interest in the topology of these inverse limit spaces. In this work we describe the topology of Markov interval maps, and use our results to show that for unimodal interval maps with finite kneading sequences, the kneading sequence and dynamics of the left endpoint determine the topology of the associated inverse limit space. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:421 / 427
页数:7
相关论文
共 50 条
  • [1] Inverse Limits with Generalized Markov Interval Functions
    Iztok Banič
    Tjaša Lunder
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 839 - 848
  • [2] Inverse Limits with Generalized Markov Interval Functions
    Banic, Iztok
    Lunder, Tjasa
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 839 - 848
  • [3] INVERSE LIMITS WITH COUNTABLY MARKOV INTERVAL FUNCTIONS
    Crepnjak, Matevz
    Lunder, Tjasa
    GLASNIK MATEMATICKI, 2016, 51 (02) : 491 - 501
  • [4] EMBEDDING INVERSE LIMITS OF INTERVAL MAPS AS ATTRACTORS
    MISIUREWICZ, M
    FUNDAMENTA MATHEMATICAE, 1985, 125 (01) : 23 - 40
  • [5] INVERSE LIMITS IN FUZZY DYNAMICAL SYSTEMS INDUCED BY INTERVAL MAPS
    Boronski, J. P.
    Kupka, J.
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 300 - 305
  • [6] CIRCLE MAPS AND INVERSE LIMITS
    BARGE, M
    ROE, R
    TOPOLOGY AND ITS APPLICATIONS, 1990, 36 (01) : 19 - 26
  • [7] HORSESHOE MAPS AND INVERSE LIMITS
    BARGE, M
    PACIFIC JOURNAL OF MATHEMATICS, 1986, 121 (01) : 29 - 39
  • [8] MULTIRESOLUTION ANALYSIS FOR MARKOV INTERVAL MAPS
    Bohnstengel, Jana
    Kesseboehmer, Marc
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (7-9) : 791 - 832
  • [10] MARKOV PAIRS, QUASI MARKOV FUNCTIONS AND INVERSE LIMITS
    Banic, Iztok
    Crepnjak, Matevz
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 695 - 707