Myristic acid-hybridized diatomite composite as a shape-stabilized phase change material for thermal energy storage

被引:36
|
作者
Han, Jie [1 ]
Liu, Songyang [1 ]
机构
[1] Liaoning Shihua Univ, Sch Min Engn, Fushun 113001, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 36期
关键词
POLYETHYLENE-GLYCOL; NANOTUBE COMPOSITE; CONDUCTIVITY; PERFORMANCE; PCM; BUILDINGS;
D O I
10.1039/c7ra02385e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study was aimed at developing a shape-stabilized composite phase-change material (PCM) for thermal energy storage. Raw diatomite was first purified via thermal treatment and acid-leaching to enhance the adsorption capacity of the PCM. The composite PCM was fabricated using myristic acid (MA) to hybridize diatomite via the vacuum impregnation method. Activated carbon (AC) was added to enhance the stability and conductivity of the composite PCM, and it could also be used to prevent the leakage of MA from the supporting materials. The maximum loading capacity and melting enthalpy of MA/H-diatomite-2 reached 72% and 124.3 J g(-1), respectively, and its thermal conductivity was as high as 0.58 W (m K)(-1). Note that the introduction of AC obviously reduced the melting and freezing periods and enhanced the heat transfer of the composite PCM. Furthermore, MA/H-diatomite-2 exhibits excellent thermal reliability after 200 cycles and could be potentially used in thermal energy storage systems.
引用
收藏
页码:22170 / 22177
页数:8
相关论文
共 50 条
  • [31] Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage
    Liu, Peng
    Gu, Xiaobin
    Zhang, Zhikai
    Rao, Jun
    Shi, Jianping
    Wang, Bin
    Bian, Liang
    ACS OMEGA, 2019, 4 (12): : 14962 - 14969
  • [32] Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials
    Li, Min
    Wu, Zhishen
    Kao, Hongtao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) : 2412 - 2416
  • [33] Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties
    Sari, Ahmet
    Bicer, Alper
    Al-Sulaiman, F. A.
    Karaipekli, Ali
    Tyagi, V. V.
    ENERGY AND BUILDINGS, 2018, 164 : 166 - 175
  • [34] Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review
    Wang J.-J.
    Xu X.-L.
    Liang K.-Y.
    Wang G.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (01): : 26 - 38
  • [35] Thermal performance of myristic acid as a phase change material for energy storage application
    Sari, A
    Kaygusuz, K
    RENEWABLE ENERGY, 2001, 24 (02) : 303 - 317
  • [36] Development of diatomite-based shape-stabilized composite phase change material for use in floor radiant heating
    Xu, Tao
    Wu, Fengping
    Zou, Ting
    Li, Jintian
    Yang, Jing
    Zhou, Xiaoqing
    Liu, Detao
    Bie, Yu
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 348
  • [37] Preparation and Characterization of Neopentyl Glycol/Epoxy Resin Shape-Stabilized Phase Change Material for Thermal Energy Storage
    Meng, Duo
    Zhao, Kang
    Wang, Anqi
    Zhao, Wei
    7TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING, 2020, 735
  • [38] Development of a shape-stabilized phase change material utilizing natural and industrial byproducts for thermal energy storage in buildings
    Mohaisen, Khaled Own
    Zahir, Md Hasan
    Maslehuddin, Mohammed
    Al-Dulaijan, Salah U.
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [39] Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management
    Shen, Chuanfei
    Li, Xiang
    Yang, Guoqing
    Wang, Yanbin
    Zhao, Lunyu
    Mao, Zhiping
    Wang, Bijia
    Feng, Xueling
    Sui, Xiaofeng
    CHEMICAL ENGINEERING JOURNAL, 2020, 385
  • [40] Preparation of paraffin/silica-graphene shape-stabilized composite phase change materials for thermal energy storage
    Falahatian, Mahnaz
    Karimzadeh, Fathallah
    Raeissi, Keyvan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (16) : 12846 - 12856