An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem

被引:349
|
作者
Zhang, Guohui [1 ]
Shao, Xinyu [1 ]
Li, Peigen [1 ]
Gao, Liang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei Province, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Flexible job-shop scheduling; Particle swarm optimization; Tabu search; TABU SEARCH;
D O I
10.1016/j.cie.2008.07.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain preferable results in solving the mono-objective FJSP. However, they are very difficult to solve multi-objective FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which integrates local search and global search scheme possesses high search efficiency. And, TS is a meta-heuristic which is designed for finding a near optimal solution of combinatorial optimization problems. Through reasonably hybridizing the two optimization algorithms, an effective hybrid approach for the multi-objective FJSP has been proposed. The computational results have proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, especially for the problems on a large scale. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1309 / 1318
页数:10
相关论文
共 50 条
  • [31] A hybrid particle swarm optimization algorithm for bi-criteria flexible job-shop scheduling problem
    Li, Junqing
    Pan, Quanke
    Xie, Shengxian
    Liang, Jing
    Zheng, Liping
    Gao, Kaizhou
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1537 - +
  • [32] Mathematical Model and Hybrid Particle Swarm Optimization for Flexible Job-Shop Scheduling Problem
    Zeng Ling-li
    Zou Feng-xing
    Xu Xiao-hong
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 731 - 736
  • [33] An Improved Multi-Population Hybrid Particle Swarm Optimization for Flexible Job-Shop Scheduling Problem
    Chen, Wen-xian
    Luo, De-lin
    Guo, Jian-min
    Chen, Jin
    PROCEEDING OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES, 2009, : 620 - 624
  • [34] A new algorithm for flexible job-shop scheduling problem based on particle swarm optimization
    Teekeng W.
    Thammano A.
    Unkaw P.
    Kiatwuthiamorn J.
    Artificial Life and Robotics, 2016, 21 (01) : 18 - 23
  • [35] Job-Shop Scheduling with Fuzzy Due Date by Multi-Objective Particle Swarm Optimization
    Abdolrazzagh-Nezhad, Majid
    Sarbishegi, Saeed
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [36] An effective memetic algorithm for multi-objective job-shop scheduling
    Gong, Guiliang
    Deng, Qianwang
    Chiong, Raymond
    Gong, Xuran
    Huang, Hezhiyuan
    KNOWLEDGE-BASED SYSTEMS, 2019, 182
  • [37] An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
    Lu, Chao
    Li, Xinyu
    Gao, Liang
    Liao, Wei
    Yi, Jin
    COMPUTERS & INDUSTRIAL ENGINEERING, 2017, 104 : 156 - 174
  • [38] A Multi-objective Memetic Algorithm for the Job-Shop Scheduling Problem
    Frutos, Mariano
    Tohme, Fernando
    OPERATIONAL RESEARCH, 2013, 13 (02) : 233 - 250
  • [39] A Multi-objective Memetic Algorithm for the Job-Shop Scheduling Problem
    Mariano Frutos
    Fernando Tohmé
    Operational Research, 2013, 13 : 233 - 250
  • [40] A new multi-objective fully-informed particle swarm algorithm for flexible job-shop scheduling problems
    Jia, Zhao-hong
    Chen, Hua-ping
    Tang, Jun
    CIS WORKSHOPS 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY WORKSHOPS, 2007, : 191 - +