Correlation-length -: exponent relation for the two-dimensional random Ising model

被引:7
|
作者
Lajkó, P
Iglói, F
机构
[1] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
[2] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevE.61.147
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the two-dimensional (2D) random Ising model on a diagonal strip of the square lattice, where the bonds rake two values, J(1)>J(2), with equal probability. Using an iterative method, based on a successive application of the star-triangle transformation, we have determined at the bulk critical temperature the correlation length along the strip xi(L) for different widths of the strip L less than or equal to 21. The ratio of the two lengths xi(L)/L = A is found to approach the universal value A = 2/pi for large L, independent of the dilution parameter J(1)/J(2). With our method we have demonstrated with high numerical precision, that the surface correlation function of the 2D dilute Ising model is self-averaging in the critical point conformally covariant and the corresponding decay exponent is eta(parallel to)=1.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条
  • [21] Correlation exponent of two-dimensional amplitude fractals
    Maksimyak, PP
    Silivra, IV
    [J]. INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 1997, 3317 : 229 - 233
  • [22] AMPLITUDE EXPONENT RELATION FOR THE CORRELATION LENGTH IN THE SPHERICAL MODEL
    HENKEL, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (04): : L227 - L230
  • [23] EXACT SOLUTION OF THE ISING-MODEL ON A RANDOM TWO-DIMENSIONAL LATTICE
    KAZAKOV, VA
    [J]. JETP LETTERS, 1986, 44 (03) : 133 - 137
  • [24] Phase transition of two-dimensional Ising model on random point patterns
    Fu, XJ
    Szeto, KY
    Cheung, WK
    [J]. PHYSICAL REVIEW E, 2004, 70 (05):
  • [25] Phase diagram of the two-dimensional Ising model with random competing interactions
    Salmon, Octavio R.
    de Sousa, J. Ricardo
    Nobre, Fernando D.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373 (30): : 2525 - 2528
  • [26] Exponential decay of correlations in the two-dimensional random field Ising model
    Jian Ding
    Jiaming Xia
    [J]. Inventiones mathematicae, 2021, 224 : 999 - 1045
  • [27] CORRELATIONS IN THE TWO-DIMENSIONAL RANDOM-FIELD ISING-MODEL
    GLAUS, U
    [J]. PHYSICAL REVIEW B, 1986, 34 (05): : 3203 - 3211
  • [28] EQUILIBRIUM PROPERTIES OF THE TWO-DIMENSIONAL RANDOM (+/-J) ISING-MODEL
    CHEUNG, HF
    MCMILLAN, WL
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (36): : 7027 - 7032
  • [29] TWO-DIMENSIONAL ISING-MODEL IN RANDOM MAGNETIC-FIELDS
    MORGENSTERN, I
    BINDER, K
    HORNREICH, RM
    [J]. PHYSICAL REVIEW B, 1981, 23 (01) : 287 - 297
  • [30] Logarithmic corrections in the two-dimensional Ising model in a random surface field
    Pleimling, M
    Bagaméry, FA
    Turban, L
    Iglói, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (37): : 8801 - 8809