Correlation-length -: exponent relation for the two-dimensional random Ising model

被引:7
|
作者
Lajkó, P
Iglói, F
机构
[1] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
[2] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevE.61.147
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the two-dimensional (2D) random Ising model on a diagonal strip of the square lattice, where the bonds rake two values, J(1)>J(2), with equal probability. Using an iterative method, based on a successive application of the star-triangle transformation, we have determined at the bulk critical temperature the correlation length along the strip xi(L) for different widths of the strip L less than or equal to 21. The ratio of the two lengths xi(L)/L = A is found to approach the universal value A = 2/pi for large L, independent of the dilution parameter J(1)/J(2). With our method we have demonstrated with high numerical precision, that the surface correlation function of the 2D dilute Ising model is self-averaging in the critical point conformally covariant and the corresponding decay exponent is eta(parallel to)=1.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条