Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment

被引:76
|
作者
Liu, Shangshi [1 ,2 ]
Shen, Haihua [1 ,2 ]
Chen, Songchao [3 ,4 ]
Zhao, Xia [1 ]
Biswas, Asim [5 ]
Jia, Xiaolin [6 ]
Shi, Zhou [6 ]
Fang, Jingyun [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] INRA, Unite InfoSol, F-45075 Orleans, France
[4] Agrocampus Ouest, INRA, SAS, F-35042 Rennes, France
[5] Univ Guelph, Sch Environm Sci, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
[6] Zhejiang Univ, Coll Environm & Resource Sci, Inst Appl Remote Sensing & Informat Technol, Hangzhou 310058, Zhejiang, Peoples R China
[7] Peking Univ, Minist Educ, Inst Ecol, Key Lab Earth Surface Proc, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
China's forest; Cubist model; Soil organic carbon; Visible-near-infrared spectroscopy; LEAST-SQUARE REGRESSION; LOCAL SCALE; PREDICTION; MATTER; CHEMISTRY; DYNAMICS;
D O I
10.1016/j.geoderma.2019.04.003
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Large-scale soil organic carbon (SOC) stock assessment is expensive as a large number of samples must be collected and then their time-consuming measurements must be made in the laboratory. Previous studies have shown that visible-near-infrared reflectance (vis-NIR) spectroscopy can quickly predict SOC content at a low cost. However, the application of this method at the large scale remains challenging due to the high spatial heterogeneity of SOC and the spatially dependent relationships of soil spectra and SOC content. Here, we conducted large-scale soil sampling across China's forests and established the Chinese forest soil spectral library (CFSSL) by measuring SOC content and scanning the vis-NIR reflectance of 11, 213 soil samples. Compared with the traditional global partial least squares regression (PLSR) modeling method (R-2 = 0.75, RPIQ = 1.95), the clustering by fast research and find of density peak in combination with the Cubist model significantly improved the prediction ability of SOC content (R-2 = 0.96, RPIQ = 5.83). This study provided a cost-efficient spectroscopic methodology, including measurement and prediction modeling, for large-scale SOC estimation.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 50 条
  • [1] Soil Organic Carbon Prediction Using Vis-NIR Spectroscopy with a Large Dataset
    Shi, Yang
    Wang, Rujing
    Wang, Yubing
    [J]. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, PT I, 2019, 545 : 76 - 86
  • [2] Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy
    Jiang, Qinghu
    Chen, Yiyun
    Guo, Long
    Fei, Teng
    Qi, Kun
    [J]. REMOTE SENSING, 2016, 8 (09):
  • [3] Estimating Soil Organic Carbon Content with Visible-Near-Infrared (Vis-NIR) Spectroscopy
    Gao, Yin
    Cui, Lijuan
    Lei, Bing
    Zhai, Yanfang
    Shi, Tiezhu
    Wang, Junjie
    Chen, Yiyun
    He, Hui
    Wu, Guofeng
    [J]. APPLIED SPECTROSCOPY, 2014, 68 (07) : 712 - 722
  • [4] Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
    Chinilin, A. V.
    Vindeker, G. V.
    Savin, I. Yu.
    [J]. EURASIAN SOIL SCIENCE, 2023, 56 (11) : 1605 - 1617
  • [5] Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
    A. V. Chinilin
    G. V. Vindeker
    I. Yu. Savin
    [J]. Eurasian Soil Science, 2023, 56 : 1605 - 1617
  • [6] USING VIS-NIR SPECTROSCOPY TO ESTIMATE SOIL ORGANIC CONTENT
    Hu, Tao
    Qi, Kun
    Hu, Yi'na
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8263 - 8266
  • [7] Using Vis-NIR Spectroscopy for Monitoring Temporal Changes in Soil Organic Carbon
    Deng, Fan
    Minasny, Budiman
    Knadel, Maria
    McBratney, Alex
    Heckrath, Goswin
    Greve, Mogens H.
    [J]. SOIL SCIENCE, 2013, 178 (08) : 389 - 399
  • [8] Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy
    Nocita, Marco
    Stevens, Antoine
    Noon, Carole
    van Wesemael, Bas
    [J]. GEODERMA, 2013, 199 : 37 - 42
  • [9] Estimating purple-soil moisture content using Vis-NIR spectroscopy
    Gou, Yu
    Wie, Jie
    Li, Jin-lin
    Han, Chen
    Tu, Qing-yan
    Liu, Chun-hong
    [J]. JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (09) : 2214 - 2223
  • [10] Estimating purple-soil moisture content using Vis-NIR spectroscopy
    Yu Gou
    Jie Wei
    Jin-lin Li
    Chen Han
    Qing-yan Tu
    Chun-hong Liu
    [J]. Journal of Mountain Science, 2020, 17 : 2214 - 2223