Testing independence and goodness-of-fit in linear models

被引:32
|
作者
Sen, A. [1 ]
Sen, B. [2 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Bootstrap; Goodness-of-fit test; Linear regression; Model checking; Reproducing kernel Hilbert space; Test of independence; NONPARAMETRIC REGRESSION; DISTANCE COVARIANCE; CHECKS; HETEROSCEDASTICITY; HYPOTHESIS; DEPENDENCE;
D O I
10.1093/biomet/asu026
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a linear regression model and propose an omnibus test to simultaneously check the assumption of independence between the error and predictor variables and the goodness-of-fit of the parametric model. Our approach is based on testing for independence between the predictor and the residual obtained from the parametric fit by using the Hilbert-Schmidt independence criterion (Gretton et al., 2008). The proposed method requires no user-defined regularization, is simple to compute based on only pairwise distances between points in the sample, and is consistent against all alternatives. We develop distribution theory for the proposed test statistic, under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution. We prove the consistency of the bootstrap scheme. A simulation study shows that our method has better power than its main competitors. Two real datasets are analysed to demonstrate the scope and usefulness of our method.
引用
收藏
页码:927 / 942
页数:16
相关论文
共 50 条
  • [31] The problem of testing the goodness-of-fit of stochastic resource apportionment models
    Cassey, P
    King, RAR
    ENVIRONMETRICS, 2001, 12 (07) : 691 - 698
  • [32] Testing goodness-of-fit for nonlinear regression models with heterogeneous variances
    Caouder, N
    Huet, S
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (04) : 491 - 507
  • [33] Goodness-of-fit test for linear models based on local polynomials
    Alcalá, JT
    Cristóbal, JA
    González-Manteiga, W
    STATISTICS & PROBABILITY LETTERS, 1999, 42 (01) : 39 - 46
  • [34] Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models
    Genest, Christian
    Remillard, Bruno
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (06): : 1096 - 1127
  • [35] Global goodness-of-fit tests for group testing regression models
    Chen, Peng
    Tebbs, Joshua M.
    Bilder, Christopher R.
    STATISTICS IN MEDICINE, 2009, 28 (23) : 2912 - 2928
  • [36] PARAMETER-ESTIMATION AND GOODNESS-OF-FIT TESTING IN MULTINOMIAL MODELS
    GARCIAPEREZ, MA
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1994, 47 : 247 - 282
  • [37] A global goodness-of-fit test for linear structural mean models
    Taguri M.
    Izumi S.
    Behaviormetrika, 2017, 44 (1) : 253 - 262
  • [38] Goodness-of-fit tests for linear and nonlinear time series models
    Escanciano, J. Carlos
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 531 - 541
  • [39] TESTING GOODNESS-OF-FIT AND CONDITIONAL INDEPENDENCE WITH APPROXIMATE CO-SUFFICIENT SAMPLING
    Barber, Rina Foygel
    Janson, Lucas
    ANNALS OF STATISTICS, 2022, 50 (05): : 2514 - 2544
  • [40] Testing goodness-of-fit with interval data
    Vozhov, Stanislav S.
    Chimitova, Ekaterina V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2016, 34 (01): : 35 - 42