Phase compensation based on step-length control in continuous-variable quantum key distribution

被引:3
|
作者
Li, Dengwen [1 ,2 ]
Huang, Peng [1 ,2 ]
Wang, Tao [1 ,2 ]
Wang, Shiyu [1 ,2 ]
Chen, Rui [1 ,2 ]
Zeng, Guihua [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai Key Lab Nav & Locat Based Serv, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Ctr Quantum Informat Sensing & Proc QSIP, Shanghai 200240, Peoples R China
[3] Northwest Univ, Coll Informat Sci & Technol, Xian 710127, Shanxi, Peoples R China
来源
OPTICS EXPRESS | 2019年 / 27卷 / 15期
基金
中国国家自然科学基金;
关键词
Efficiency - Iterative methods;
D O I
10.1364/OE.27.020670
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase compensation is a dispensable procedure to reduce the difference between legitimate parties in continuous-variable quantum key distribution (CVQKD) because of the unavoidable phase drift of the quantum signals. However, it is a difficult task to compensate the fast drifted phase accurately. Here, we propose a novel phase compensation scheme based on an optimal iteration algorithm. Analysis shows that this scheme can make the phase compensation reach a higher precision level while simultaneously ensuring the efficiency. When the accuracy is determined, we can minimize the number of iterations by controlling the step-length to increase the algorithm efficiency. Moreover, we can improve the accuracy of phase compensation by means of changing the step-length. This work breaks the bottleneck of accuracy problem in phase compensation and contributes to the performance of the whole CVQKD system. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20670 / 20687
页数:18
相关论文
共 50 条
  • [31] Modulator vulnerability in continuous-variable quantum key distribution
    Jain, Nitin
    Derkach, Ivan
    Chin, Hou-Man
    Filip, Radim
    Andersen, Ulrik L.
    Usenko, Vladyslav C.
    Gehring, Tobias
    EMERGING IMAGING AND SENSING TECHNOLOGIES FOR SECURITY AND DEFENCE VII, 2022, 12274
  • [32] Atmospheric effects on continuous-variable quantum key distribution
    Wang, Shiyu
    Huang, Peng
    Wang, Tao
    Zeng, Guihua
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [33] Spherical reconciliation for a continuous-variable quantum key distribution
    卢钊
    史建红
    李风光
    Chinese Physics B, 2017, 26 (04) : 113 - 118
  • [35] Multidimensional reconciliation for continuous-variable quantum key distribution
    Leverrier, Anthony
    Alleaume, Romain
    Boutros, Joseph
    Zemor, Gilles
    Grangier, Philippe
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1020 - +
  • [36] Source monitoring for continuous-variable quantum key distribution
    Yang, Jian
    Xu, Bingjie
    Guo, Hong
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [37] Symmetrization technique for continuous-variable quantum key distribution
    Leverrier, Anthony
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [38] Spherical reconciliation for a continuous-variable quantum key distribution
    Lu, Zhao
    Shi, Jian-Hong
    Li, Feng-Guang
    CHINESE PHYSICS B, 2017, 26 (04)
  • [39] Digital synchronization for continuous-variable quantum key distribution
    Chin, Hou-Man
    Jain, Nitin
    Andersen, Ulrik L.
    Zibar, Darko
    Gehring, Tobias
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)
  • [40] Practical implementation,of continuous-variable quantum key distribution
    Hirano, Takuya
    Shimoguchi, Atsushi
    Shirasaki, Kazuya
    Tokunaga, Shingo
    Furuki, Atsushi
    Kawamoto, Yohei
    namiki, Ryo
    QUANTUM INFORMATION AND COMPUTATION IV, 2006, 6244