Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems

被引:44
|
作者
Ding, Feng [1 ]
Wang, Xuehai [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Gradient search; Hierarchical identification; Performance analysis; Bilinear-in-parameter system; WIENER NONLINEAR-SYSTEMS; SQUARES IDENTIFICATION ALGORITHM; STATE-SPACE SYSTEMS; AUXILIARY MODEL; HAMMERSTEIN SYSTEMS; FILTERING TECHNIQUE; DYNAMICAL-SYSTEMS; NEWTON ITERATION; DELAY;
D O I
10.1007/s00034-016-0367-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.
引用
收藏
页码:1393 / 1405
页数:13
相关论文
共 50 条
  • [1] Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems
    Feng Ding
    Xuehai Wang
    Circuits, Systems, and Signal Processing, 2017, 36 : 1393 - 1405
  • [2] Convergence Analysis of the Hierarchical Least Squares Algorithm for Bilinear-in-Parameter Systems
    Xuehai Wang
    Feng Ding
    Fuad E. Alsaadi
    Tasawar Hayat
    Circuits, Systems, and Signal Processing, 2016, 35 : 4307 - 4330
  • [3] Hierarchical maximum likelihood generalized extended stochastic gradient algorithms for bilinear-in-parameter systems
    Liu, Haibo
    Wang, Junwei
    Meng, Xiangxiang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (02): : 402 - 417
  • [4] Convergence Analysis of the Hierarchical Least Squares Algorithm for Bilinear-in-Parameter Systems
    Wang, Xuehai
    Ding, Feng
    Alsaadi, Fuad E.
    Hayat, Tasawar
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (12) : 4307 - 4330
  • [5] The filtering based parameter identification for bilinear-in-parameter systems
    Wang, Xuehai
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (01): : 514 - 538
  • [6] Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique
    Chen, Mengting
    Ding, Feng
    Yang, Erfu
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (17): : 2380 - 2389
  • [7] A modified model decomposition identification for bilinear-in-parameter systems
    Chen, Huibo
    Fan, Jiangbo
    Li, Jing
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 258 - 263
  • [8] Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems
    Zhu, Yancheng
    Wu, Huaiyu
    Chen, Zhihuan
    Chen, Yang
    Zheng, Xiujuan
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (10) : 2562 - 2584
  • [9] Coupled stochastic gradient algorithm and performance analysis for multivariable systems
    Liu Y.-J.
    Ding F.
    Kongzhi yu Juece/Control and Decision, 2016, 31 (08): : 1487 - 1492
  • [10] Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise
    Chen, Mengting
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    Alsaedi, Ahmed
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (17): : 7885 - 7898