A Not Obvious Correlation Between the Structure of Green Fluorescent Protein Chromophore Pocket and Hydrogen Bond Dynamics: A Choreography From ab initio Molecular Dynamics

被引:28
|
作者
Coppola, Federico [1 ]
Perrella, Fulvio [1 ]
Petrone, Alessio [1 ]
Donati, Greta [1 ,3 ]
Rega, Nadia [1 ,2 ]
机构
[1] Univ Naples Federico II, Dept Chem Sci, Naples, Italy
[2] Ctr Adv Biomat Healthcare CRIB, Naples, Italy
[3] Univ Salerno, Dept Biol & Chem, Fisciano, Italy
关键词
hydrogen bond dynamics; fluorescent proteins; ab initio molecular dynamics; structure-function correlation; QM; MM; DENSITY-FUNCTIONAL THEORY; POLARIZABLE CONTINUUM MODEL; EXCITED-STATE DYNAMICS; PROTON-TRANSFER; GAUSSIAN-ORBITALS; BORN-OPPENHEIMER; FORCE-FIELD; GAS-PHASE; COLLECTIVE MOTIONS; WATER;
D O I
10.3389/fmolb.2020.569990
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Green Fluorescent Protein (GFP) is a widely studied chemical system both for its large amount of applications and the complexity of the excited state proton transfer responsible of the change in the protonation state of the chromophore. A detailed investigation on the structure of the chromophore environment and the influence of chromophore form (either neutral or anionic) on it is of crucial importance to understand how these factors could potentially influence the protein function. In this study, we perform a detailed computational investigation based on the analysis of ab-initio molecular dynamics simulations, to disentangle the main structural quantities determining the fine balance in the chromophore environment. We found that specific hydrogen bonds interactions directly involving the chromophore (or not), are correlated to quantities, such as the volume of the cavity in which the chromophore is embedded and that it is importantly affected by the chromophore protonation state. The cross-correlation analysis performed on some of these hydrogen bonds and the cavity volume, demonstrates a direct correlation among them and we also identified the ones specifically involved in this correlation. We also found that specific interactions among residues far in the space are correlated, demonstrating the complexity of the chromophore environment and that many structural quantities have to be taken into account to properly describe and understand the main factors tuning the active site of the protein. From an overall evaluation of the results obtained in this work, it is shown that the residues which a priori are perceived to be spectators play instead an important role in both influencing the chromophore environment (cavity volume) and its dynamics (cross-correlations among spatially distant residues).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Ab initio molecular dynamics of the green fluorescent protein (GFP) chromophore:: An insight into the photoinduced dynamics of green fluorescent proteins
    Tozzini, V
    Nifosì, R
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24): : 5797 - 5803
  • [2] Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
    Cheolhee Kim
    Min Sun Yeom
    Eunae Kim
    Korean Journal of Chemical Engineering, 2016, 33 : 255 - 259
  • [3] Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
    Kim, Cheolhee
    Yeom, Min Sun
    Kim, Eunae
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (01) : 255 - 259
  • [4] Experimental and ab initio molecular dynamics study of hydrogen bond systems
    Malec, L. M.
    Brela, M. Z.
    Stadnicka, K. M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C215 - C215
  • [5] Hydrogen bond dynamics and vibrational spectroscopy of aqueous system: An ab initio molecular dynamics study
    Karmakar, Anwesa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [6] Detailed Photoisomerization Dynamics of a Green Fluorescent Protein Chromophore Based Molecular Switch
    Jiang, Chen-Wei
    Fang, Ai-Ping
    Zhao, Di
    Li, Hong-Rong
    Xie, Rui-Hua
    Li, Fu-Li
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
  • [7] Bifurcated Hydrogen Bond in Lithium Nitrate Trihydrate Probed by ab Initio Molecular Dynamics
    Muniz-Miranda, Francesco
    Pagliai, Marco
    Cardini, Gianni
    Righini, Roberto
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (09): : 2147 - 2153
  • [8] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
    姜万润
    王瑞
    任雪光
    张志远
    李丹慧
    王志刚
    Chinese Physics B, 2020, 29 (10) : 238 - 249
  • [9] Comparison of the Hydrogen Bond Interaction Dynamics in the Guanine and Cytosine Crystals: Ab Initio Molecular Dynamics and Spectroscopic Study
    Brela, Mateusz Z.
    Klimas, Oskar
    Surmiak, Ewa
    Boczar, Marek
    Nakajima, Takahito
    Wojcik, Marek J.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (50): : 10757 - 10763
  • [10] Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics
    Jakse, N.
    Pasturel, A.
    PHYSICAL REVIEW B, 2014, 89 (17)