Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

被引:11
|
作者
Gutierrez-Villalobos, Jose M. [1 ]
Rodriguez-Resendiz, Juvenal [1 ]
Rivas-Araiza, Edgar A. [1 ]
Martinez-Hernandez, Moises A. [1 ]
机构
[1] Univ Autonoma Queretaro, Lab Mecatron, Queretaro 76010, Mexico
来源
SENSORS | 2015年 / 15卷 / 07期
关键词
adaptive system; neural networks; on-line identification; adjustable speed driver; parameter estimation; FOC;
D O I
10.3390/s150715311
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
引用
收藏
页码:15311 / 15325
页数:15
相关论文
共 50 条
  • [21] Simultaneous estimation of speed and rotor resistance in sensorless induction motor vector controlled drive
    Thongam, J.S.
    Ouhrouche, M.
    Haghgoeian, F.
    Ezzaidi, H.
    [J]. International Journal of Modelling and Simulation, 2007, 27 (04): : 369 - 378
  • [22] Sensorless in duction Motor Drive Based on Reactive Power MRAS Estimator Using Artificial Neural Network
    Kubatko, Marek
    Kirschner, Stepan
    Sotola, Vojtech
    Hamani, Kamal
    Kuchar, Martin
    [J]. 2024 24TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING, EPE 2024, 2024, : 124 - 127
  • [23] Speed estimator for induction motor drives using an artificial neural network
    Kulkarni, AS
    ElSharkawi, MA
    [J]. 1997 IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE RECORD, 1997, : MD221 - MD223
  • [24] Speed sensorless vector controlled induction motor drive with rotor time constant identification using artificial neural networks
    Karanayil, B
    Rahman, AF
    Grantham, C
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2002, : 715 - 720
  • [25] Neural network application for flux and speed estimation in the sensorless induction motor drive
    Orlowska-Kowalska, T
    Kowalski, CT
    [J]. ISIE '97 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-3, 1997, : 1253 - 1258
  • [26] Speed sensorless vector control with wavelet neural network for induction motor drive
    Xu, Kai
    Wang, Xiangping
    [J]. ICIC Express Letters, 2014, 8 (09): : 2431 - 2436
  • [27] Sensorless speed estimation for induction motor based on neural network
    Deng, Hui
    Yang, Jing
    Xu, Dianguo
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 2891 - 2895
  • [28] Performance of the Speed Sensorless Induction Motor Drive for Traction Application with MRAS type Speed and Flux Estimator
    Dybkowski, Mateusz
    Orlowska-Kowalska, Teresa
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOLS 1-5, 2012, : 477 - 481
  • [29] Robust speed sensorless control of universal field oriented induction motor drive with on-line stator resistance tuning
    Soltani, J
    Hajian, M
    Abdolmaleki, Y
    [J]. PEDS 2003 : FIFTH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 193 - 198
  • [30] An On-line Rotor Resistance Estimator for Induction Machine Drives
    Kwon, Chun-Ki
    [J]. JOURNAL OF POWER ELECTRONICS, 2009, 9 (03) : 354 - 364