The application of nanoparticles to the multivalent recognition of biomacromolecules or programmed self-assembly requires control over the relative placement of chemical groups on their surface. We have developed a method to direct the functionalization of surfaces of aldehyde-equipped gold nanoparticles using a DNA template. An error-correction mechanism is built into the functionalization process thanks to the thermodynamic control enabled by the hydrazone exchange reaction. This reversible reaction can be conveniently switched off by removing the catalyst, preserving the functionalization.