Improving accuracy by subpixel smoothing in the finite-difference time domain

被引:380
|
作者
Farjadpour, A. [1 ]
Roundy, David
Rodriguez, Alejandro
Ibanescu, M.
Bermel, Peter
Joannopoulos, J. D.
Johnson, Steven G.
Burr, G. W.
机构
[1] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
关键词
D O I
10.1364/OL.31.002972
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous dielectric materials, due to the inhererent discretization (pixelization). We show that accuracy can be significantly improved by using a subpixel smoothing of the dielectric function, but only if the smoothing scheme is properly designed. We develop such a scheme based on a simple criterion taken from perturbation theory and compare it with other published FDTD smoothing methods. In addition to consistently achieving the smallest errors, our scheme is the only one that attains quadratic convergence with resolution for arbitrarily sloped interfaces. Finally, we discuss additional difficulties that arise for sharp dielectric corners. (c) 2006 Optical Society of America.
引用
收藏
页码:2972 / 2974
页数:3
相关论文
共 50 条
  • [21] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [22] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [23] THE TIME DOMAIN FINITE-DIFFERENCE METHOD AND ITS APPLICATION
    CHOI, DH
    HOEFER, WJR
    MICROWAVE JOURNAL, 1986, 29 (05) : 115 - 115
  • [24] Generalized finite-difference time-domain algorithm
    Gao, Benqing
    Gandhi, Om.P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1993, 21 (03): : 31 - 36
  • [25] Finite-difference time-domain on the Cell/BE processor
    Xu, Meilian
    Thulasiraman, Parimala
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 3025 - 3032
  • [26] On the stability of the finite-difference time-domain method
    Remis, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 249 - 261
  • [27] FINITE-DIFFERENCE TIME DOMAIN MODELING OF PARTICLE ACCELERATORS
    JURGENS, TG
    HARFOUSH, FA
    PROCEEDINGS OF THE 1989 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: ACCELERATOR SCIENCE AND TECHNOLOGY, 1989, : 866 - 868
  • [28] RELATIVE ACCURACY OF SEVERAL FINITE-DIFFERENCE TIME-DOMAIN METHODS IN 2 AND 3 DIMENSIONS
    SHLAGER, KL
    MALONEY, JG
    RAY, SL
    PETERSON, AF
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (12) : 1732 - 1737
  • [29] Domain Decomposition Finite-Difference Time Domain Considering Multiple Reflections
    Abd-El-Raouf, Hany E.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 1756 - 1759
  • [30] Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method
    Wallace, JW
    Jensen, MA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (03): : 610 - 619