Fretting Fatigue Testing of Carburized Alloy Steel in Very High Cycle Regime Using an Ultrasonic Torsional Fatigue Testing Machine

被引:2
|
作者
Shimamura, Yoshinobu [1 ]
Kokubo, Akito [2 ]
Ishii, Hitoshi [1 ]
Tohgo, Keiichiro [1 ]
Fujii, Tomoyuki [1 ]
Yagasaki, Tooru [3 ]
Harada, Masamichi [3 ]
机构
[1] Shizuoka Univ, Dept Mech Engn, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328561, Japan
[2] Shizuoka Univ, Naka Ku, Hamamatsu, Shizuoka 4328561, Japan
[3] Honda Res & Dev Co Ltd, Automobile R&D Ctr, Haga-machi, Tochigi, Japan
关键词
Fretting fatigue; Carburized alloy steel; Very high cycle regime; Ultrasonic torsional fatigue testing machine; FREQUENCY;
D O I
10.4028/www.scientific.net/AMR.891-892.1152
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Recently, high-strength alloy steels have been developed and used for various products. It is well known that fretting fatigue does not show fatigue limit. In other words, fretting fatigue failure may occur in very high cycle regime more than 107 cycles. However, it is difficult to investigate fretting fatigue property in very high cycle regime by using conventional fatigue testing machines because it is time-consuming. In this study, a fretting fatigue testing method for carburized alloy steels in very high cycle regime is explored by using an ultrasonic torsional fatigue testing machine. Carburized SCM420H was used for investigation. The experimental results showed that it is possible to conduct fretting fatigue testing of carburized alloy steels by using an ultrasonic torsional fatigue testing machine.
引用
收藏
页码:1152 / +
页数:2
相关论文
共 50 条
  • [31] Effect of Mean Torsional Stress on Very High Cycle Torsional Fatigue Strength of High Strength Steel
    Shimamura Y.
    Hayashi Y.
    Kinefuchi M.
    Tanegashima R.
    Sugitani K.
    Sandaiji Y.
    Fujii T.
    Kikuchi S.
    Tohgo K.
    Zairyo/Journal of the Society of Materials Science, Japan, 2022, 71 (12) : 976 - 982
  • [32] Ultrasonic Fatigue of Ti6Al4V in the Very High Cycle Fatigue Regime
    Heinz, Stefan
    Balle, Frank
    Wagner, Guntram
    Eifler, Dietmar
    TMS 2012 141ST ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 2: MATERIALS PROPERTIES, CHARACTERIZATION, AND MODELING, 2012, : 831 - 838
  • [33] Interior crack initiation and growth behaviors and life prediction of a carburized gear steel under high cycle fatigue and very high cycle fatigue
    Wei Li
    Zhenduo Sun
    Hailong Deng
    Zhenyu Zhang
    Tatsuo Sakai
    Journal of Materials Research, 2015, 30 : 2247 - 2257
  • [34] Interior crack initiation and growth behaviors and life prediction of a carburized gear steel under high cycle fatigue and very high cycle fatigue
    Li, Wei
    Sun, Zhenduo
    Deng, Hailong
    Zhang, Zhenyu
    Sakai, Tatsuo
    JOURNAL OF MATERIALS RESEARCH, 2015, 30 (14) : 2247 - 2257
  • [35] ULTRASONIC FATIGUE TESTING OF A ROLLED VALVE STEEL
    HANSSON, LH
    INTERNATIONAL JOURNAL OF FATIGUE, 1982, 4 (04) : 239 - 239
  • [36] MACHINE FOR LOW-CYCLE FATIGUE TESTING AT HIGH TEMPERATURES
    PETRUSHIN, IV
    ARDENTOV, VV
    MINAKOV, IT
    IVANOVA, TI
    IVANOV, VV
    INDUSTRIAL LABORATORY, 1970, 36 (02): : 305 - +
  • [37] Investigation of fretting fatigue performance for IN718 dovetail joint in very high cycle regime
    Shen, Zeshuai
    Huang, Zhiyong
    Wang, Jian
    Zheng, Liangqi
    Qian, Hongjiang
    Zhu, Qingyun
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 195
  • [38] Fatigue characteristics of bearing steel in very high cycle fatigue
    Chang-Min Suh
    Jong-Hyoung Kim
    Journal of Mechanical Science and Technology, 2009, 23 : 420 - 425
  • [39] Fatigue characteristics of bearing steel in very high cycle fatigue
    Chana-Min, Suh
    Jong-Hyoung, Kim
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (02) : 420 - 425
  • [40] Fatigue behaviour of reinforcing steel in the very-high-cycle-fatigue regime N ≥ 10 millions
    Rappl, Stefan
    Osterminski, Kai
    Ansary, Shima
    Hiemer, Florian
    BETON- UND STAHLBETONBAU, 2021, 116 (03) : 232 - 239