Top-Down Visual Saliency via Joint CRF and Dictionary Learning

被引:98
|
作者
Yang, Jimei [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Adobe Res, San Jose, CA 95110 USA
[2] Univ Calif Merced, Sch Engn, Merced, CA USA
基金
美国国家科学基金会;
关键词
Visual saliency; top-down visual saliency; fixation prediction; dictionary learning and conditional random fields; FEATURES; ATTENTION;
D O I
10.1109/TPAMI.2016.2547384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
引用
收藏
页码:576 / 588
页数:13
相关论文
共 50 条
  • [21] Perceptual learning and top-down influences in primary visual cortex
    Wu Li
    Valentin Piëch
    Charles D Gilbert
    Nature Neuroscience, 2004, 7 : 651 - 657
  • [22] Perceptual learning and top-down influences in primary visual cortex
    Li, W
    Piëch, V
    Gilbert, CD
    NATURE NEUROSCIENCE, 2004, 7 (06) : 651 - 657
  • [23] SUN: Top-down saliency using natural statistics
    Kanan, Christopher
    Tong, Mathew H.
    Zhang, Lingyun
    Cottrell, Garrison W.
    VISUAL COGNITION, 2009, 17 (6-7) : 979 - 1003
  • [24] Locality and context-aware top-down saliency
    Li, Junxia
    Rajan, Deepu
    Yang, Jian
    IET IMAGE PROCESSING, 2018, 12 (03) : 400 - 407
  • [25] Coherent Visual Storytelling via Parallel Top-Down Visual and Topic Attention
    Gu, Jinjing
    Wang, Hanli
    Fan, Ruichao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 257 - 268
  • [26] Top-down influences on visual processing
    Gilbert, Charles D.
    Li, Wu
    NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) : 350 - 363
  • [27] Integrating bottom-up and top-down visual stimulus for saliency detection in news video
    Bo Wu
    Linfeng Xu
    Multimedia Tools and Applications, 2014, 73 : 1053 - 1075
  • [28] Top-down influences on visual processing
    Charles D. Gilbert
    Wu Li
    Nature Reviews Neuroscience, 2013, 14 : 350 - 363
  • [29] Visual-saliency dependent changes in top-down signals from the frontal eye field
    Umeda, Kazumasa
    Morishima, Yosuke
    Rajeswaren, Vivian
    Sakai, Katsuyuki
    NEUROSCIENCE RESEARCH, 2010, 68 : E102 - E102
  • [30] Top-down visual search in Wimmelbild
    Bergbauer, Julia
    Tari, Sibel
    HUMAN VISION AND ELECTRONIC IMAGING XVIII, 2013, 8651