Solving fractional integral equations by the Haar wavelet method

被引:111
|
作者
Lepik, Ue. [1 ]
机构
[1] Univ Tartu, Dept Appl Math, EE-50409 Tartu, Estonia
关键词
Fractional calculus; Haar wavelets; Integral equations; Fractional vibrations; NUMERICAL-SOLUTION; DYNAMICS;
D O I
10.1016/j.amc.2009.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:468 / 478
页数:11
相关论文
共 50 条
  • [21] Higher order Haar wavelet method for numerical solution of integral equations
    Shumaila Yasmeen
    Rohul Siraj-ul-Islam
    [J]. Computational and Applied Mathematics, 2023, 42
  • [22] Higher order Haar wavelet method for numerical solution of integral equations
    Yasmeen, Shumaila
    Siraj-Ul-Islam
    Amin, Rohul
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [23] Solution of nonlinear Fredholm integral equations via the Haar wavelet method
    Lepik, Uelo
    Tamme, Enn
    [J]. PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES-PHYSICS MATHEMATICS, 2007, 56 (01): : 17 - 27
  • [24] Haar wavelet Picard method for fractional nonlinear partial differential equations
    Saeed, Umer
    Rehman, Mujeeb Ur
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 310 - 322
  • [25] Solving General Fractional Lane-Emden-Fowler Differential Equations Using Haar Wavelet Collocation Method
    Albalawi, Kholoud Saad
    Kumar, Ashish
    Alkahtani, Badr Saad
    Goswami, Pranay
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [26] Wavelet Galerkin method for solving singular integral equations
    Maleknejad, K.
    Nosrati, M.
    Najafi, E.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (02): : 373 - 390
  • [27] Wavelet method for solving integral equations of simple liquids
    Fedorov, MV
    Chuev, GN
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2005, 120 (1-3) : 159 - 162
  • [28] Haar wavelet method for approximating the solution of a coupled system of fractional-order integral-differential equations
    Xie, Jiaquan
    Wang, Tao
    Ren, Zhongkai
    Zhang, Jun
    Quan, Long
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 163 : 80 - 89
  • [29] The Legendre wavelet method for solving fractional differential equations
    Rehman, Mujeeb Ur
    Khan, Rahmat Ali
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4163 - 4173
  • [30] Wavelet operational matrix method for solving fractional integral and differential equations of Bratu-type
    Wang, Lifeng
    Ma, Yunpeng
    Meng, Zhijun
    Huang, Jun
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 92 (04): : 353 - 368