Adaptive Hierarchical Space Partitioning for Online Classification

被引:0
|
作者
Kilic, O. Fatih [1 ]
Vanli, N. Denizcan [2 ]
Ozkan, Huseyin [3 ]
Delibalta, Ibrahim [4 ]
Kozat, Suleyman S. [1 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
[2] MIT, Sch Elect & Comp Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[4] Turk Telekom Labs, Istanbul, Turkey
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an online algorithm for supervised learning with strong performance guarantees under the empirical zero-one loss. The proposed method adaptively partitions the feature space in a hierarchical manner and generates a powerful finite combination of basic models. This provides algorithm to obtain a strong classification method which enables it to create a linear piecewise classifier model that can work well under highly non-linear complex data. The introduced algorithm also have scalable computational complexity that scales linearly with dimension of the feature space, depth of the partitioning and number of processed data. Through experiments we show that the introduced algorithm outperforms the state-of-the-art ensemble techniques over various well-known machine learning data sets.
引用
收藏
页码:2290 / 2294
页数:5
相关论文
共 50 条
  • [31] Adaptive State Space Partitioning for Dynamic Decision Processes
    Ninja Soeffker
    Marlin W. Ulmer
    Dirk C. Mattfeld
    [J]. Business & Information Systems Engineering, 2019, 61 : 261 - 275
  • [32] Adaptive State Space Partitioning for Dynamic Decision Processes
    Soeffker, Ninja
    Ulmer, Marlin W.
    Mattfeld, Dirk C.
    [J]. BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2019, 61 (03) : 261 - 275
  • [33] A PROBABILISTIC APPROACH FOR ADAPTIVE STATE-SPACE PARTITIONING
    Vila-Valls, Jordi
    Closas, Pau
    Bugallo, Monica F.
    Miguez, Joaquin
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 248 - 252
  • [34] Information space partitioning using adaptive Voronoi diagrams
    Reitsma, René
    Trubin, Stanislav
    [J]. Information Visualization, 2007, 6 (02) : 123 - 138
  • [35] Room Classification using a Hierarchical Representation of Space
    Ursic, Peter
    Kristan, Matej
    Skocaj, Danijel
    Leonardis, Ales
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1371 - 1378
  • [36] On Query-Adaptive Online Partitioning: A Study of Evolutionary Algorithms
    Zhang, Ting
    Tran, Duc A.
    [J]. 2016 IEEE 35TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2016,
  • [37] Incremental hierarchical discriminant regression for online image classification
    Weng, JY
    Hwang, WS
    [J]. SIXTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, PROCEEDINGS, 2001, : 476 - 480
  • [38] An Adaptive Online System for Efficient Processing of Hierarchical Data
    Asiki, Athanasia
    Tsoumakos, Dimitrios
    Koziris, Nectarios
    [J]. HPDC'09: 18TH ACM INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, 2009, : 71 - 80
  • [39] Online Adaptive Hierarchical Clustering in a Decision Tree Framework
    Basak, Jayanta
    [J]. JOURNAL OF PATTERN RECOGNITION RESEARCH, 2011, 6 (02): : 201 - 229
  • [40] Hierarchical partitioning
    Behrens, D
    Harbich, K
    Barke, E
    [J]. 1996 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN - DIGEST OF TECHNICAL PAPERS, 1996, : 470 - 477