A-quasiconvexity:: weak-star convergence and the gap

被引:24
|
作者
Fonseca, I [1 ]
Leoni, G
Müller, S
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Max Planck Inst Math Naturwissenschaft, Leipzig, Germany
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
A-quasiconvexity; gap; non-standard growth conditions; lower semicontinuity; Sobolev embedding theorem; Radon-Nikodym decomposition theorem;
D O I
10.1016/j.anihpc.2003.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lower semicontinuity results with respect to weak-* convergence in the sense of measures and with respect to weak convergence in L-P are obtained for functionals nu is an element of L-1 (Omega; R-m) --> integral(Omega) f(x, nu (x)) dx, where admissible sequences {nu(n)} satisfy a first order system of PDEs Anu(n) = 0. We suppose that A has constant rank, f is A-quasiconvex and satisfies the non standard growth conditions 1/C(\nu\(P) - 1) less than or equal to f(nu) less than or equal to C(1 + \nu\(q)) with q is an element of [p, pN/(N - 1)) for p less than or equal to N - 1, q is an element of [p, p + 1) for p > N - 1. In particular, our results generalize earlier work where Anu = 0 reduced to nu = del(s)u for some s is an element of N. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:209 / 236
页数:28
相关论文
共 50 条