Multistage Hammerstein-Wiener System Identification with the Help of Binary Excitation

被引:0
|
作者
Bieganski, Marcin [1 ]
Mzyk, Grzegorz [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Elect, Dept Control Syst & Mechatron, Wybrzeze Stanislawa Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Hammerstein-Wiener system; Nonlinear system identification Nonparametric identification; Least squares; Kernel estimates Binary sequences; NONPARAMETRIC IDENTIFICATION;
D O I
10.1007/978-3-319-74454-4_46
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the paper, we consider a problem of identification of HammersteinWiener (N-L-N) system. The proposed strategy consists of 4 steps. Firstly, we identify the finite impulse response of the linear block in the presence of random input and random noise using both parametric and non-parametric identification tools (least squares and kernel estimate). Secondly, special binary sequences are generated to recover second nonlinear characteristic. Next, the interactive signal between dynamic linear and second nonlinear block is estimated. Finally, we recover first nonlinear characteristic using standard algorithm for Hammerstein system identification (least squares and singular value decomposition).
引用
收藏
页码:476 / 484
页数:9
相关论文
共 50 条
  • [21] Identification of pH Process using Hammerstein-Wiener Model
    Abinayadhevi, P.
    Prasad, S. J. Suji
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [22] Identification of Hammerstein-Wiener model with discontinuous input nonlinearity
    A.BROURI
    F.Z.EL MANSOURI
    F.Z.CHAOUI
    C.ABDELAALI
    F.GIRI
    Science China(Information Sciences), 2023, 66 (12) : 33 - 47
  • [23] Support Vector Regression For Hammerstein-Wiener Model Identification
    Karthik, C.
    Ramalakshmi, A.
    Valarmathi, K.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [24] Multi-Level Identification of Hammerstein-Wiener Systems
    Mzyk, Grzegorz
    Bieganski, Marcin
    Mielcarek, Pawel
    IFAC PAPERSONLINE, 2019, 52 (29): : 174 - 179
  • [25] Identification of Time-Varying Hammerstein-Wiener Systems
    Yu, Feng
    Mao, Zhizhong
    He, Dakuo
    IEEE ACCESS, 2020, 8 (08): : 136906 - 136916
  • [26] Errors-In-Variables Hammerstein-Wiener model identification
    Su, Hao
    Hou, Jie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1378 - 1383
  • [27] Set-Membership identification of Hammerstein-Wiener systems
    Cerone, Vito
    Piga, Dario
    Regruto, Diego
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 2819 - 2824
  • [28] Identification of Hammerstein-Wiener models with hysteresis front nonlinearities
    Brouri, Adil
    Chaoui, Fatima-Zahra
    Giri, Fouad
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (12) : 3353 - 3367
  • [29] Recursive identification method for a class of Hammerstein-Wiener systems
    Yu, Feng
    Mao, Zhi-Zhong
    Jia, Ming-Xing
    Yuan, Ping
    Yang, Fei-Sheng
    Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (02): : 327 - 335
  • [30] Recursive identification for multi-input-multi-output Hammerstein-Wiener system
    Bai, Jing
    Mao, Zhizhong
    Pu, Tiecheng
    INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (06) : 1457 - 1469