Boundedness of fractional integral operators on α-modulation spaces

被引:8
|
作者
Wu Xiao-mei [1 ]
Chen Jie-cheng [2 ]
机构
[1] Zhejiang Normal Univ, Xingzhi Colledge, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
alpha-modulation space; fractional integral operator; bilinear fractional integral operator; bilinear Hilbert transform; BANACH FRAMES; COMMUTATORS;
D O I
10.1007/s11766-014-3170-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the boundedness of the fractional integral operators, the bilinear fractional integral operators and the bilinear Hilbert transform on alpha-modulation spaces.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条
  • [21] BOUNDEDNESS OF THE MULTILINEAR FRACTIONAL INTEGRAL OPERATORS WITH ROUGH KERNEL ON MORREY SPACES
    Guliyev, Emin V.
    Hasanov, Amil A.
    Safarov, Zaman V.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2015, 41 (01): : 44 - 55
  • [22] Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces
    Eroglu, Ahmet
    [J]. BOUNDARY VALUE PROBLEMS, 2013,
  • [23] Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces
    Ali Akbulut
    Vugar H Hamzayev
    Zaman V Safarov
    [J]. Journal of Inequalities and Applications, 2015
  • [24] BOUNDEDNESS CRITERIA FOR LINEAR AND MULTILINEAR FRACTIONAL INTEGRAL OPERATORS IN LORENTZ SPACES
    Meskhi, Alexander
    Natelashvili, Lazare
    [J]. TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (02) : 331 - 333
  • [25] FRACTIONAL INTEGRAL OPERATORS ON α-MODULATION SPACES IN THE FULL RANGE
    Zhao, Guoping
    Guo, Weichao
    Yu, Xiao
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (03) : 499 - 512
  • [26] On the boundedness of the multilinear fractional integral operators
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 142 - 147
  • [27] BOUNDEDNESS OF GENERALIZED FRACTIONAL INTEGRAL OPERATORS
    Tang Canqin (Changde Normal University
    [J]. Analysis in Theory and Applications, 2002, (04) : 38 - 54
  • [28] On the Boundedness of Multilinear Fractional Integral Operators
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    [J]. The Journal of Geometric Analysis, 2020, 30 : 667 - 679
  • [29] On the Boundedness of Multilinear Fractional Integral Operators
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 667 - 679
  • [30] Net Spaces and Boundedness of Integral Operators
    Erlan Nursultanov
    Sergey Tikhonov
    [J]. Journal of Geometric Analysis, 2011, 21 : 950 - 981