CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation

被引:128
|
作者
Tuladhar, Rubina [1 ]
Yeu, Yunku [2 ]
Piazza, John Tyler [1 ]
Tan, Zhen [3 ]
Clemenceau, Jean Rene [2 ]
Wu, Xiaofeng [1 ]
Barrett, Quinn [1 ]
Herbert, Jeremiah [1 ]
Mathews, David H. [3 ]
Kim, James [4 ,5 ]
Hwang, Tae Hyun [2 ]
Lum, Lawrence [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA
[2] Cleveland Clin, Lerner Res Inst, Dept Quantitat Hlth Sci, Cleveland, OH 44195 USA
[3] Univ Rochester, Med Ctr, Dept Biochem & Biophys, Rochester, NY 14642 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr Dallas, Hamon Ctr Therapeut Oncol Res, Dept Biochem, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
SPLICING REGULATION; MOUSE MODEL; NONSENSE; ALIGNMENT; MUSCLE; DECAY;
D O I
10.1038/s41467-019-12028-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The introduction of insertion-deletions (INDELs) by non-homologous end-joining (NHEJ) pathway underlies the mechanistic basis of CRISPR-Cas9-directed genome editing. Selective gene ablation using CRISPR-Cas9 is achieved by installation of a premature termination codon (PTC) from a frameshift-inducing INDEL that elicits nonsense-mediated decay (NMD) of the mutant mRNA. Here, by examining the mRNA and protein products of CRISPR targeted genes in a cell line panel with presumed gene knockouts, we detect the production of foreign mRNAs or proteins in similar to 50% of the cell lines. We demonstrate that these aberrant protein products stem from the introduction of INDELs that promote internal ribosomal entry, convert pseudo-mRNAs (alternatively spliced mRNAs with a PTC) into protein encoding molecules, or induce exon skipping by disruption of exon splicing enhancers (ESEs). Our results reveal challenges to manipulating gene expression outcomes using INDEL-based mutagenesis and strategies useful in mitigating their impact on intended genome-editing outcomes.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] CRISPR-Cas9-Based Gene Knockout of Immune Checkpoints in Expanded NK Cells
    Mohammadian Gol, Tahereh
    Kim, Miso
    Sinn, Ralph
    Urena-Bailen, Guillermo
    Stegmeyer, Sarah
    Gratz, Paul Gerhard
    Zahedipour, Fatemeh
    Roig-Merino, Alicia
    Antony, Justin S.
    Mezger, Markus
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [32] Toward a CRISPR-Cas9-based Gene Drive in the Diamondback Moth Plutella xylostella
    Xu, Xuejiao
    Harvey-Samuel, Tim
    Siddiqui, Hamid Anees
    Ang, Joshua Xin De
    Anderson, Michelle Ellis
    Reitmayer, Christine M. M.
    Lovett, Erica
    Leftwich, Philip T. T.
    You, Minsheng
    Alphey, Luke
    CRISPR JOURNAL, 2022, 5 (02): : 224 - 236
  • [33] Unintended on-target chromosomal instability following CRISPR/Cas9 single gene targeting
    Przewrocka, J.
    Rowan, A.
    Rosenthal, R.
    Kanu, N.
    Swanton, C.
    ANNALS OF ONCOLOGY, 2020, 31 (09) : 1270 - 1273
  • [34] ON-target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected
    Boutin, Julian
    Cappellen, David
    Rosier, Juliette
    Amintas, Samuel
    Dabernat, Sandrine
    Bedel, Aurelie
    Moreau-Gaudry, Francois
    CRISPR JOURNAL, 2022, 5 (01): : 19 - 30
  • [35] Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants
    Hajiahmadi, Zahra
    Movahedi, Ali
    Wei, Hui
    Li, Dawei
    Orooji, Yasin
    Ruan, Honghua
    Zhuge, Qiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (15)
  • [36] CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells
    Wen, Wei
    Zhang, Xiao-Bing
    EXPERIMENTAL HEMATOLOGY, 2022, 110 : 13 - 19
  • [37] RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    Perez-Pinera, Pablo
    Kocak, D. Dewran
    Vockley, Christopher M.
    Adler, Andrew F.
    Kabadi, Ami M.
    Polstein, Lauren R.
    Thakore, Pratiksha I.
    Glass, Katherine A.
    Ousterout, David G.
    Leong, Kam W.
    Guilak, Farshid
    Crawford, Gregory E.
    Reddy, Timothy E.
    Gersbach, Charles A.
    NATURE METHODS, 2013, 10 (10) : 973 - +
  • [38] CRISPR-Cas9-Based Genome Editing and Cytidine Base Editing in Acinetobacter baumannii
    Wang, Yu
    Wang, Zhipeng
    Ji, Quanjiang
    STAR PROTOCOLS, 2020, 1 (01):
  • [39] Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9-Based Editing
    Sharma, Rohit
    Avendano Rangel, Francys
    Reis-Cunha, Joao Luis
    Marques, Larissa Pinheiro
    Figueira, Claudio P.
    Borba, Pedro B.
    Viana, Sayonara M.
    Beneke, Tom
    Bartholomeu, Daniella C.
    de Oliveira, Camila I.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 11
  • [40] CRISPRLearner: A Deep Learning-Based System to Predict CRISPR/Cas9 sgRNA On-Target Cleavage Efficiency
    Dimauro, Giovanni
    Colagrande, Pierpasquale
    Carlucci, Roberto
    Ventura, Mario
    Bevilacqua, Vitoantonio
    Caivano, Danilo
    ELECTRONICS, 2019, 8 (12)