CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation

被引:129
|
作者
Tuladhar, Rubina [1 ]
Yeu, Yunku [2 ]
Piazza, John Tyler [1 ]
Tan, Zhen [3 ]
Clemenceau, Jean Rene [2 ]
Wu, Xiaofeng [1 ]
Barrett, Quinn [1 ]
Herbert, Jeremiah [1 ]
Mathews, David H. [3 ]
Kim, James [4 ,5 ]
Hwang, Tae Hyun [2 ]
Lum, Lawrence [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA
[2] Cleveland Clin, Lerner Res Inst, Dept Quantitat Hlth Sci, Cleveland, OH 44195 USA
[3] Univ Rochester, Med Ctr, Dept Biochem & Biophys, Rochester, NY 14642 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr Dallas, Hamon Ctr Therapeut Oncol Res, Dept Biochem, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
SPLICING REGULATION; MOUSE MODEL; NONSENSE; ALIGNMENT; MUSCLE; DECAY;
D O I
10.1038/s41467-019-12028-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The introduction of insertion-deletions (INDELs) by non-homologous end-joining (NHEJ) pathway underlies the mechanistic basis of CRISPR-Cas9-directed genome editing. Selective gene ablation using CRISPR-Cas9 is achieved by installation of a premature termination codon (PTC) from a frameshift-inducing INDEL that elicits nonsense-mediated decay (NMD) of the mutant mRNA. Here, by examining the mRNA and protein products of CRISPR targeted genes in a cell line panel with presumed gene knockouts, we detect the production of foreign mRNAs or proteins in similar to 50% of the cell lines. We demonstrate that these aberrant protein products stem from the introduction of INDELs that promote internal ribosomal entry, convert pseudo-mRNAs (alternatively spliced mRNAs with a PTC) into protein encoding molecules, or induce exon skipping by disruption of exon splicing enhancers (ESEs). Our results reveal challenges to manipulating gene expression outcomes using INDEL-based mutagenesis and strategies useful in mitigating their impact on intended genome-editing outcomes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation
    Rubina Tuladhar
    Yunku Yeu
    John Tyler Piazza
    Zhen Tan
    Jean Rene Clemenceau
    Xiaofeng Wu
    Quinn Barrett
    Jeremiah Herbert
    David H. Mathews
    James Kim
    Tae Hyun Hwang
    Lawrence Lum
    [J]. Nature Communications, 10
  • [2] The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System
    Qiao, Huanhuan
    Wu, Jieting
    Zhang, Xiaodong
    Luo, Jian
    Wang, Hao
    Ming, Dong
    [J]. FRONTIERS IN CHEMISTRY, 2021, 9
  • [3] CRISPR-Cas9-Based Mutagenesis of the Mucormycosis-Causing Fungus Lichtheimia corymbifera
    Ibragimova, Sandugash
    Szebenyi, Csilla
    Sinka, Rita
    Alzyoud, Elham I.
    Homa, Monika
    Vagvoelgyi, Csaba
    Nagy, Gabor
    Papp, Tamas
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (10) : 1 - 11
  • [4] Improving CRISPR/ Cas9 On-target Specificity
    Jamal, Muhammad
    Ullah, Arif
    Naeem, Muhammad Ahsan
    Tyagi, Rohit
    Habib, Zeshan
    Rehman, Khaista
    [J]. CURRENT ISSUES IN MOLECULAR BIOLOGY, 2018, 26 : 65 - 80
  • [5] Keeping CRISPR/Cas on-Target
    Jamal, Muhammad
    Khan, Faheem Ahmed
    Da, Lin
    Habib, Zeshan
    Dai, Jinxia
    Cao, Gang
    [J]. CURRENT ISSUES IN MOLECULAR BIOLOGY, 2016, 20 : 1 - 12
  • [6] CRISPR-Cas9-based Photoactivatable Transcription System
    Nihongaki, Yuta
    Yamamoto, Shun
    Kawano, Fuun
    Suzuki, Hideyuki
    Sato, Moritoshi
    [J]. CHEMISTRY & BIOLOGY, 2015, 22 (02): : 169 - 174
  • [7] CRISPR-Cas9-based target validation for p53-reactivating model compounds
    Wanzel, Ichael
    Vischedyk, Jonas B.
    Gittler, Miriam P.
    Gremke, Niklas
    Seiz, Julia R.
    Hefter, Mirjam
    Noack, Magdalena
    Savai, Rajkumar
    Mernberger, Marco
    Charles, Joel P.
    Schneikert, Jean
    Bretz, Anne Catherine
    Nist, Andrea
    Stiewe, Thorsten
    [J]. NATURE CHEMICAL BIOLOGY, 2016, 12 (01) : 22 - +
  • [8] CRISPR-Cas9-based target validation for p53-reactivating model compounds
    Wanzel M.
    Vischedyk J.B.
    Gittler M.P.
    Gremke N.
    Seiz J.R.
    Hefter M.
    Noack M.
    Savai R.
    Mernberger M.
    Charles J.P.
    Schneikert J.
    Bretz A.C.
    Nist A.
    Stiewe T.
    [J]. Nature Chemical Biology, 2016, 12 (1) : 22 - 28
  • [9] Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing
    Mitchell L. Leibowitz
    Stamatis Papathanasiou
    Phillip A. Doerfler
    Logan J. Blaine
    Lili Sun
    Yu Yao
    Cheng-Zhong Zhang
    Mitchell J. Weiss
    David Pellman
    [J]. Nature Genetics, 2021, 53 : 895 - 905
  • [10] CRISPR-Cas9-based target validation for p53-reactivating model compounds
    Wanzel, M.
    Vischedyk, J.
    Gittler, M.
    Gremke, N.
    Mernberger, M.
    Charles, J.
    Schneikert, J.
    Bretz, A. C.
    Nist, A.
    Stiewe, T.
    [J]. EUROPEAN JOURNAL OF CANCER, 2016, 61 : S122 - S122