A User-Friendly Dictionary-Supported SSVEP-based BCI Application

被引:9
|
作者
Stawicki, Piotr [1 ]
Gembler, Felix [1 ]
Volosyak, Ivan [1 ]
机构
[1] Rhine Waal Univ Appl Sci, Fac Technol & Bion, Kleve, Germany
来源
关键词
Brain-Computer Interface (BCI); Steady-state visual evoked potential (SSVEP); Dictionary; Wizard; COMPUTER; FREQUENCY; SYSTEM;
D O I
10.1007/978-3-319-57753-1_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain-computer interface (BCI) measures and interprets brain signals enabling people to communicate without the use of peripheral muscles. One of the common BCI paradigms are steady state visual evoked potentials (SSVEPs), brain signals induced by gazing at a constantly flickering target. The choice of stimulation frequencies and the number of simultaneously used stimuli highly influence the performance of such SSVEP-based BCI. In this article, a dictionary-driven four class SSVEP-based spelling application is presented, tested, and evaluated. To enhance classification accuracy, frequencies were determined individually with a calibration software for SSVEP-BCIs, enabling non-experts to set up the system. Forty-one healthy participants used the BCI system to spell English sentences (lengths between 23 and 37 characters). All participants completed the spelling task successfully. A mean accuracy of 97.92% and a mean ITR of 23.84 bits/min were achieved, 18 participants even reached 100% accuracy. On average the number of commands needed to spell the example sentences with four classes, without dictionary support is higher by a factor of 1.92. Thanks to the implemented dictionary the time needed to spell typical everyday sentences can be drastically reduced.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 50 条
  • [31] Effect of posterized naturalistic stimuli on SSVEP-based BCI
    Ng, Kian B.
    Bradley, Andrew P.
    Cunnington, Ross
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 3105 - 3108
  • [32] Online SSVEP-based BCI using Riemannian geometry
    Kalunga, Emmanuel K.
    Chevallier, Sylvain
    Barthelemy, Quentin
    Djouani, Karim
    Monacelli, Eric
    Hamam, Yskandar
    NEUROCOMPUTING, 2016, 191 : 55 - 68
  • [33] SSVEP-based BCI control of the DASHER writing system
    Garrido-del Angel, Pavel
    Bojorges-Valdez, Erik
    Yanez-Suarez, Oscar
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 446 - 448
  • [34] Calibration-free SSVEP-based BCI Switch
    Sastry, R., V
    Karthik, S.
    Adithya, R.
    Ravi, Aravind
    Indrapriyadarsini, S.
    Panwar, Gagandeep
    Ramakrishnan, A. G.
    2019 IEEE 16TH INDIA COUNCIL INTERNATIONAL CONFERENCE (IEEE INDICON 2019), 2019,
  • [35] Using Modular Neural Network to SSVEP-based BCI
    Chen, Yeou-Jiunn
    Chen, Shih-Chung
    Wu, Chung-Min
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION (ICASI), 2016,
  • [36] Control of the robotic arm system with an SSVEP-based BCI
    Fu, Rongrong
    Feng, Xiaolei
    Wang, Shiwei
    Shi, Ye
    Jia, Chengcheng
    Zhao, Jing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [37] A comprehensive benchmark dataset for SSVEP-based hybrid BCI
    Sadeghi, Sahar
    Maleki, Ali
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [38] The Effect of Harmonics Count on SSVEP-Based BCI Results
    Kancaoglu, Murat
    Kuntalp, Mehmet
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 110 - 113
  • [39] An SSVEP-Based BCI System for SMS in a Mobile Phone
    Lin, Jzau-Sheng
    Wang, Mei
    Lia, Pei-Yu
    Li, Zejin
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 412 - 415
  • [40] A high-ITR SSVEP-based BCI speller
    Chen, Xiaogang
    Chen, Zhikai
    Gao, Shangkai
    Gao, Xiaorong
    BRAIN-COMPUTER INTERFACES, 2014, 1 (3-4) : 181 - 191