Cartesian products of graphs as subgraphs of de Bruijn graphs of dimension at least three

被引:4
|
作者
Andreae, T [1 ]
Hintz, M [1 ]
Nolle, M [1 ]
Schreiber, G [1 ]
Schuster, GW [1 ]
Seng, H [1 ]
机构
[1] TECH UNIV HAMBURG,D-21071 HAMBURG,GERMANY
关键词
de Bruijn graphs; Cartesian products of graphs; interconnection networks; subgraph embeddings; hypercubes; tori; parallel and distributed computing;
D O I
10.1016/S0166-218X(97)00029-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Cartesian product G = G(1) x ... x G(M) (m greater than or equal to 2) of nontrivial connected graphs G(i) and the base d, dimension D de Bruijn graph B(d, D), it is investigated under which conditions G is (or is not) a subgraph of B(d,D). We present a complete solution of this problem for the case D greater than or equal to 4. For D = 3, we give partial results including a complete solution for the case that G is a torus, i.e., G is the Cartesian product of cycles.
引用
收藏
页码:3 / 34
页数:32
相关论文
共 50 条
  • [21] Generalized de Bruijn graphs
    Malyshev, Fedor M.
    [J]. DISCRETE MATHEMATICS AND APPLICATIONS, 2022, 32 (01): : 11 - 38
  • [22] Generalized de bruijn graphs
    Zdzistaw, Grodzki
    Wronski, Aleksandr
    [J]. Journal of Information Processing and Cybernetics, 1994, 30 (01):
  • [23] Consensus on de Bruijn graphs
    Yan, G.
    Fu, Z. -Q.
    Chen, G.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 63 (04): : 515 - 520
  • [24] Random subgraphs in Cartesian powers of regular graphs
    Joos, Felix
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [25] Crossing graphs as joins of graphs and Cartesian products of median graphs
    Bresar, Bostjan
    Klavzar, Sandi
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 26 - 32
  • [26] De Bruijn sequences and De Bruijn graphs for a general language
    Moreno, E
    [J]. INFORMATION PROCESSING LETTERS, 2005, 96 (06) : 214 - 219
  • [27] On Cartesian products of signed graphs
    Lajou, Dimitri
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 319 : 533 - 555
  • [28] Polytopality and Cartesian products of graphs
    Julian Pfeifle
    Vincent Pilaud
    Francisco Santos
    [J]. Israel Journal of Mathematics, 2012, 192 : 121 - 141
  • [29] Edge minimization in de Bruijn graphs
    Baier, Uwe
    Buechler, Thomas
    Ohlebusch, Enno
    Weber, Pascal
    [J]. INFORMATION AND COMPUTATION, 2022, 285
  • [30] The Collatz conjecture and De Bruijn graphs
    Laarhoven, Thijs
    de Weger, Benne
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (04): : 971 - 983