Automatic modulation classification by support vector machines

被引:0
|
作者
Zhao, ZJ [1 ]
Zhou, YS
Mei, F
Li, JS
机构
[1] Xidian Univ, Natl Key Lab Integrated Serv Network, Xian 710071, Peoples R China
[2] Hangzhou Inst Elect Engn, Hangzhou 310018, Zhe Jiang, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic classification of analog and digital modulation signals plays an important role in communication applications such as an intelligent demodulator, interference identification and monitoring, so many investigations have been carried out in the past. Support Vector Machines (SVMs) maps inputs vectors nonlinearly into a high dimensional feature space and constructs the optimum separating hyperplane in space to realize signal classification. In this paper, a new method based on SVM for classifying AM, FM, BFSK, BPSK, USB and LSB is proposed. The classification results for real communication signals using SVMs are given. Compared with radial basis function neural network (RBFNN) method, the method can classify these signals well, and the correct classification rates are above 82%.
引用
收藏
页码:654 / 659
页数:6
相关论文
共 50 条
  • [21] Support vector machines and target classification
    Karlsen, RE
    Gorsich, DJ
    Gerhart, GR
    [J]. AUTOMATIC TARGET RECOGNITION X, 2000, 4050 : 108 - 118
  • [22] Improving Classification with Support Vector Machines
    Muntean, Maria
    Valean, Honoriu
    Ileana, Ioan
    Rotar, Corina
    [J]. CONTROL ENGINEERING AND APPLIED INFORMATICS, 2010, 12 (03): : 23 - 33
  • [23] Image classification by support vector machines
    Zhang, YN
    Zhao, RC
    Leung, Y
    [J]. PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 360 - 363
  • [24] Multicategory classification by support vector machines
    Bredensteiner, EJ
    Bennett, KP
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 53 - 79
  • [25] Support Vector Machines for classification and regression
    Brereton, Richard G.
    Lloyd, Gavin R.
    [J]. ANALYST, 2010, 135 (02) : 230 - 267
  • [26] Support vector machines for polycategorical classification
    Tsochantaridis, I
    Hofmann, T
    [J]. MACHINE LEARNING: ECML 2002, 2002, 2430 : 456 - 467
  • [27] Support vector machines in multisource classification
    Halldorsson, GH
    Benediktsson, JA
    Sveinsson, JR
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2054 - 2056
  • [28] Automatic hyperparameter tuning for support vector machines
    Anguita, D
    Ridella, S
    Rivieccio, F
    Zunino, R
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 1345 - 1350
  • [29] Automatic face recognition by support vector machines
    Li, HQ
    Wang, SY
    Qi, FH
    [J]. COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2004, 3322 : 716 - 725
  • [30] Automatic pathology classification using a single feature machine learning - support vector machines
    Yepes-Calderon, Fernando
    Pedregosa, Fabian
    Thirion, Bertrand
    Wang, Yalin
    Lepore, Natasha
    [J]. MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035