Dunkl generalization of q-Szasz-Mirakjan Kantorovich operators which preserve some test functions

被引:12
|
作者
Mursaleen, Mohammad [1 ,2 ]
Rahman, Shagufta [1 ]
Alotaibi, Abdullah [2 ,3 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
q-integers; Dunkl analog; Szasz operators; Szasz-Mirakjan-Kantorovich operators; modulus of continuity; Korovkin's type approximation theorem; Voronovskaja-type theorem; APPROXIMATION;
D O I
10.1186/s13660-016-1257-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce q-Szasz-Mirakjan-Kantorovich operators generated by a Dunkl generalization of the exponential function and we propose two different modifications of the q-Szasz-Mirakjan-Kantorovich operators which preserve some test functions. We obtain some approximation results with the help of the well-known Korovkin theorem and the weighted Korovkin theorem for these operators. Furthermore, we study convergence properties in terms of the modulus of continuity and the class of Lipschitz functions. This type of operator modification enables better error estimation than the classical ones. We also obtain a Voronovskaja-type theorem for these operators.
引用
收藏
页数:18
相关论文
共 44 条
  • [21] q-Szasz-Mirakyan-Kantorovich type operators preserving some test functions
    Orkcu, Mediha
    Dogru, Ogun
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1588 - 1593
  • [22] Generalization of Szasz-Mirakjan-Kantorovich operators using multiple Appell polynomials
    Swarup, Chetan
    Gupta, Pooja
    Dubey, Ramu
    Mishra, Vishnu Narayan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [23] Modified Szasz-Mirakjan-Kantorovich Operators Preserving Linear Functions
    Duman, Oktay
    Ozarslan, Mehmet Ali
    Della Vecchia, Biancamaria
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (02) : 151 - 158
  • [24] Approximation Properties of Some Modified Szasz-Mirakjan-Kantorovich Operators
    Yadav, R.
    Meher, R.
    Mishra, V. N.
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2022, 15 (02) : 170 - 185
  • [25] Stancu-type generalization of Dunkl analogue of Szasz-Kantorovich operators
    Icoz, Guerhan
    Cekim, Bayram
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (07) : 1803 - 1810
  • [26] Approximation properties of bivariate extension of q-Szasz-Mirakjan-Kantorovich operators
    Orkcu, Mediha
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [27] Dunkl generalization of Szasz operators via q-calculus
    Icoz, Gurhan
    Cekim, Bayram
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [28] (p, q)-Generalization of Szasz-Mirakjan operators and their approximation properties
    Kara, Mustafa
    Mahmudov, Nazim, I
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [29] Szasz-Mirakjan-Kantorovich Operators Reproducing Affine Functions: Inverse Results
    Bustamante, Jorge
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [30] On (p, q)-generalization of Szasz-Mirakyan Kantorovich operators
    Sharma, Honey
    Gupta, Cheena
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 213 - 222