Point equation of the boundary of the numerical range of a matrix polynomial

被引:14
|
作者
Chien, MT
Nakazato, H
Psarrakos, P
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[3] Hirosaki Univ, Fac Sci & Technol, Dept Math Syst Sci, Hirosaki, Aomori 0368561, Japan
关键词
matrix polynomial; numerical range; boundary; discriminant;
D O I
10.1016/S0024-3795(01)00549-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical range of an n x n matrix polynomial P(lambda) = A(m)lambda(m) + A(m-1)lambda(m-1) + .... + A(1)lambda + A(0) is defined by W(P) = {lambda is an element of C : x * P (lambda)x = 0, x is an element of C-n, x not equal 0}. For the linear pencil P(lambda) = Ilambda - A, the range W(P) coincides with the numerical range of matrix A, F(A) = {x*Ax: x is an element of C-n, x*x = 1}. In this paper, we obtain necessary conditions for the origin to be a boundary point of F(A). As a consequence, an algebraic curve of degree at most 2n(n - 1)m, which contains the boundary of W(P), is constructed. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [31] Unified parametrization for the solutions to the polynomial diophantine matrix equation and the generalized Sylvester matrix equation
    Bin Zhou
    Zhi-Bin Yan
    Guang-Ren Duan
    International Journal of Control, Automation and Systems, 2010, 8 : 29 - 35
  • [32] Solving the nth degree polynomial matrix equation
    Petraki, Dorothea
    Samaras, Nikolaos
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (05) : 1079 - 1092
  • [33] Unified Parametrization for the Solutions to the Polynomial Diophantine Matrix Equation and the Generalized Sylvester Matrix Equation
    Zhou, Bin
    Yan, Zhi-Bin
    Duan, Guang-Ren
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2010, 8 (01) : 29 - 35
  • [34] Symmetric matrix polynomial equation: Interpolation results
    LAAS-CNRS, Toulouse, France
    Automatica, 7 (811-824):
  • [35] Unified Parametrization for the Solutions to the Polynomial Diophantine Matrix Equation and the Generalized Sylvester Matrix Equation
    Zhou, Bin
    Duan, Guang-Ren
    Yan, Zhi-Bin
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4075 - 4080
  • [36] Geometry of Numerical Range of Linear Operator Polynomial
    Wu, Deyu
    Chen, Alatancang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 151 - 162
  • [37] Geometry of Numerical Range of Linear Operator Polynomial
    Deyu WU
    Alatancang CHEN
    Chinese Annals of Mathematics,Series B, 2025, (01) : 151 - 162
  • [38] Numerical range of a continuant matrix
    Chien, MT
    Huang, JM
    APPLIED MATHEMATICS LETTERS, 2001, 14 (02) : 213 - 216
  • [39] THE NUMERICAL RANGE OF MATRIX PRODUCTS
    Drury, Stephen
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 307 - 321
  • [40] APPROXIMATION OF THE NUMERICAL RANGE OF POLYNOMIAL OPERATOR MATRICES
    Muhammad, Ahmed
    OPERATORS AND MATRICES, 2021, 15 (03): : 1073 - 1087